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Abstract

The excluded middle vantage point forest is a new
data structure that supports worst case sublinear
time searches in a metric space for nearest neighbors
within a fixed radius 7 of arbitrary queries. Worst
case performance depends on the dataset but is not
affected by the distribution of queries.

Our analysis predicts vp-forest performance in sim-
ple settings such as L, spaces with uniform random
datasets — and experiments confirm these predic-
tions. Another contribution of the analysis is a new
perspective on the curse of dimensionality in the con-
text of our methods and kd-trees as well. In our ide-
alized setting the dataset is organized into a forest
of O(N'=°) trees, each of depth O(log N). Here p
may be viewed as depending on 7, the distance func-
tion, and on the dataset. The radius of interest 7
is an input to the organization process and the re-
sult is a linear space data structure specialized to
answer queries within this distance. Searches then
require O(N'~?log N) time, or O(log N) time given
O(N'=*) processors.

Our conclusion is that these new data structures
exhibit useful behavior only for small radius searches,
where despite their variation in search times, conven-
tional kd-trees perform much better.

Keywords: Nearest neighbor search, Vantage point
tree (vp-tree), kd-tree, Computational geometry, Metric
space.
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1 Introduction

We consider the radius-limited nearest neighbor
problem in a metric space. That is, given an N
point dataset and a radius of interest 7, produce a
data structure and associated search algorithm to
rapidly locate the dataset point nearest to any query
q. Our focus is on practical data structures that pro-
vide worst-case search time bounds.

Vantage point trees (vp-trees) [32] and kd-trees
[15, 16, 4, 3] organize an N point dataset so that
sublinear time nearest neighbor searches may be per-
formed on an ezpected basis for some fixed distribu-
tion. Performance depends on the dataset and on the
assumed distribution of queries.

The excluded middle vantage point forest (vp-
forest) is a new related data structure that supports
worst case sublinear time searches for nearest neigh-
bors within a fixed radius 7 of arbitrary queries.
Worst case performance depends on the dataset but
is not affected by the distribution of queries.

The dataset is organized into a forest of O(N!~?)
trees, each of depth O(log N). Here p may be viewed
as depending on 7, the distance measure, and on the
dataset. The radius of interest 7 is an input to the
organization process and the result is a data structure
specialized to answer queries within this distance.

Each element of the dataset occurs in exactly one
tree so that the entire forest remains linear space.
Searches follow a single root-leaf path in each tree.
There is no backtracking when the search is limited
to neighbors within distance 7. Along its way every
neighbor within 7 is necessarily encountered. The



query’s effect is to guide the descent through each
tree.

There are no significant ancillary computational
burdens at search time. So upon creating the for-
est, the user simply adds the depths of each tree in
the forest to arrive at the maximum number of dis-
tance evaluations each search will require. Each tree
may be searched independently. Searches then re-
quire O(log N) time given one processor for each tree
in the forest.

We also discuss design variations that trade space
for reductions in search time — and compare forests
with single trees constructed similarly.

The general idea behind vp-forests is easily under-
stood. Both vp-trees and kd-trees recursively divide
the dataset. At each node the remaining dataset el-
ements have an associated value, and the node has
a corresponding fixed threshold that is roughly cen-
tral in the distribution of values. Elements below
this threshold are assigned to, say, the left child, and
those above to the right. For kd-trees these values
are those of individual coordinates within each data
vector. For vp-trees they are the distance of a metric
space element to some fixed vantage point.

Elements near to the threshold lead to backtrack-
ing during search. When building a vp-forest, such
elements are deleted from the tree and added instead
to a bucket. Once the tree is complete, the bucket
is organized into a tree in the same way, resulting
in another (smaller) bucket of elements. This con-
tinues until the forest is built. This effectively elim-
inates backtracking. Because elements near to the
threshold are recursively deleted, and this threshold
lies near the middle of the distribution of values, we
refer to our data structure as an excluded middle van-
tage point forest. Both vp-trees and kd-trees may be
regarded as trivial instances of vp-forests with no ex-
cluded middle.

We present an idealized analysis that allows us to
predict vp-forest performance in simple settings such
as L, spaces with uniform random datasets. Exper-
iments are reported that confirm these predictions.
One contribution of this analysis is an interesting new
perspective on the so called curse of dimensionality
(that is that nearest neighbor search increases in dif-
ficulty with dimension). In Euclidean space given a

uniform random dataset drawn from the hypercube,
we observe that the worst-case difficulty of vp-forest
search for any fixed 7 ought to be asymptotically con-
stant with respect to dimension — and our experi-
ments confirm this. Using L; we expect constant dif-
ficulty if 7 is allowed to increase with d'/? (d denotes
dimension), and this too is confirmed by experiment.

Our analysis also suggests that kd-trees should ex-
hibit the same dimension invariance for fixed search
radii, and experiments confirm this. For a worst
case query, kd-tree search visits essentially the en-
tire dataset, but on average performs far less work
than the vp-forest.

The vp-forests described in this report stimulated
the developments of [33], but do not themselves ap-
pear to have immediate practical value.

We conclude our introduction with a brief discus-
sion of the nearest neighbor search problem and lit-
erature. See [32] for additional discussion.

Nearest neighbor search is an important task for
non-parametric density estimation, pattern recogni-
tion, information retrieval, memory-based reasoning,
and vector quantization. See [11] for a survey.

The notion of a mathematical metric space [20]
provides a useful abstraction for nearness. Exam-
ples of metric spaces include Euclidean space, the
Minkowski L, spaces, and many others. Exploit-
ing the metric space triangle inequality to eliminate
points during nearest neighbor search has a long his-
tory. Our work belongs to this line. This paper ex-
tends it by i) introducing structures that give worst
case time bounds for limited radius searches, ii) pro-
viding analysis for them, iii) introducing a method
for trading space for time, and iv) defining our data
structures and algorithms in terms of abstract pro-
jectors, which combines approaches that use distance
from a distinguished element with those such as kd-
trees that use the value of a distinguished coordinate.

In early work Burkhard and Keller [7] describe
methods for nearest neighbor retrieval by evaluating
distances from distinguished elements. Their data
structures are multi-way trees corresponding to inte-
gral valued metrics.

Fukunaga in [18, 19] exploits clustering techniques
[27] to produce a hierarchical decomposition of Eu-
clidean Space. During a branch and bound search,



the triangle inequality is used to rule out an entire
cluster if the query is far enough outside of it. While
exploring a cluster he observes that the triangle in-
equality may be used to eliminate some distance com-
putations. A key point missed is that when the query
is well inside of a cluster, the exterior need not be
searched.

Collections of graphs are considered in [14] as an
abstract metric space with a metric assuming discrete
values only. This work is related to the constructions
of [7]. In their concluding remarks the authors clearly
anticipate generalization to continuous settings such
as R".

The idea that vantage points near the corners of
the space are better than those near the center was
described in [28] and much later in [32].

More recent papers describing vantage-point ap-
proaches are [30, 29, 25] and [32] who describe vari-
ants of what we refer to as a vantage-point tree.
Also see [10] for very recent work on search in metric
spaces.

The well-known kd-tree of Friedman and Bentley
[15, 16, 4, 3] recursively divides a pointset in R¢ by
projecting each element onto a distinguished coordi-
nates. Improvements, distribution adaptation, and
incremental searches, are described in [13], [21], and
[6] respectively. In our framework kd-trees corre-
spond to unit vector projection with the canonical
basis.

More recently, the Voronoi digram [2] has provided
a useful tool in low- dimensional Euclidean settings
— and the overall field and outlook of Computational
Geometry has yielded many interesting results such
as those of [31, 9, 8, 17] and earlier [12]. It appears
that [12] may be the first work focusing on worst case
bounds.

Very recently Kleinberg [22] gives two algorithms
for an approximate form of the nearest neighbor prob-
lem. The space requirements of the first are pro-
hibitive but the second, which almost always finds
approximate nearest neighbors seems to to be of more
practical interest. The recent work reported in [1]
also considers an approximate form of the problem.
Their analysis gives exponential dependence on d but
the heuristic version of their approach they describe
may be of practical interest.

For completeness, early work dealing with two spe-
cial cases should be mentioned. Retrieval of similar
binary keys is considered by Rivest in [26] and the
L, setting is the focus of [34].

See [5] for worst case data structures for the range
search problem. This problem is related to but dis-
tinct from nearest neighbor search since a neighbor
can be nearby even if a single coordinate is distant.
But the Lo, nearest neighbor problem may be viewed
as an instance of range search. Their paper also de-
scribes a particular approach to trading space for
time via an overlapping cover. Our discussion of this
topic in section 5 also takes this general approach.

2 Vantage Point Forests

We begin by formalizing the ideas and construction
sketched in the introduction.

Definition 1 Consider an ordered set X =
{z1,...,2n} and o value m € [0,1]. Let w = [mN |
and a = | (N —w)/2|. Then the m-split of X consists
of left, middle, and right subsets defined by:

L = {zli<a}
M = {zi>ai<a+w}
R = {z;li>a+w}

That is, a balanced 3-way partition of X with a cen-
tral proportion of approximately m.

Algorithm 1 Given a collection of points H and a
1-1 projection function ng : H — R defined for any
nonempty G C H, define 7g(G) to be the ordered set
of distinct real values corresponding to the image of
G under mg. Now for m € [0,1]:

1. consider the m-split L, M, R of 7(G), and define
the split G,Gur,GRr of G corresponding to the
preimages of L, M, R respectively.

2. Given G C H construct a binary tree by form-
ing Gr,Gy,Gr, discarding Gy, and then doing
the same recursively for G and G until single
elements remain forming the tree’s leaves.



3. Starting with H build a tree Ty as described above
and denote its membership by My. Let Hy = H
and define Hy = Hg — M, i.e. the elements
discarded building T .

4. For k > 1 and Hy_1 # 0 define Ty, as the tree
built as above for Hy_,, denote the tree’s mem-
bership by My, and define Hy, = Hy_1 — M.

Definition 2 We refer to the result of algorithm 1
as the idealized excluded middle vantage point forest
induced by ™ with central proportion m. When H is
a metric space and the projection functions © satisfy
|m(z) —m(y)| < d(z,y),Vr,y € H, this forest is of use
for nearest neighbor search and we further define T to
be one half of the minimum diameter of a middle set
discarded during construction.

We remark that each tree of the forest may be
viewed as analogous to the Cantor set from real anal-
ysis. That is, the subset of [0,1] constructed by re-
moving the central third of the interval — and pro-
ceeding recursively for both the left and right thirds.
Our forest then corresponds to a decomposition of
the space into a union of Cantor sets.

Two important examples of a suitable family of
7 functions are vantage point projection for general
metric spaces, and wunit vector projection for Eu-
clidean space.

A vantage point projector 7, is defined for any
p € H by my(x) = d(p,x). The split points in tree
construction correspond to abstract spheres about p.
It is easily verified that |m,(z) — 7p(y)| < d(z,y) as
required. The range of this projector is the nonnega-
tive reals. Letting m = 0 gives rise to a vantage point
tree [32].

The unit vector projector m, is defined for any
p # 0 as mp(z) =< p,x > /|lp|l. This is easily
seen to satisfy the required inequality as well, and
its range is not limited to nonnegative values. Here
the split points correspond to hyperplanes. Choosing
p as canonical unit vectors and letting m = 0 builds
a form of kd-tree [15, 16, 4, 3]. It is important to
note that < p,x > may be computed more rapidly
for canonical unit vectors — in constant time with
respect to dimension. Also, we remark that when-
ever orthogonal vectors are used, projection distances

are, in a sense, additive, and that this fact can be
exploited (as kd-trees do) when designing solutions
specialized for L, spaces. We do not consider either
of these optimizations in this paper.

Proposition 1 Consider an idealized Vantage Point
Forest with central proportion m and corresponding
value 7. Define p=1/(1 —log, (1 —m)). Then:

1. There are ©(N'~F) trees in the forest, having
mazimum depth ©(log N).

2. A search for nearest neighbors within distance
T of a query requires O(N1~Plog N) time, and
linear space — independent of the query.

3. The search requires ©O(log N) time

O(N'=*) independent processors.

given

4. Assuming each projector wg can be constructed
i constant time, and that it can also be eval-
uated in constant time, and that m > 0, then
O(N?%-?) time is required to construct the forest.

proof: At each step in the construction the central
proportion of m elements is removed so that the left
and right subsets are each of size (1 — m)/2. The
first tree’s depth is then [1/log2(2/(1 — m))]logaN =
O(log N). So the number of elements left in the tree
is N1/(—log2(1—m)) — Np,

The number of elements left after the first tree has
been constructed is then N — N”. After the second
N — NP — (N — N*)? are left, and so on. Clearly
Q(N1=P) trees are required to reduce the population
to any fixed size.

Once the population has been reduced to 1/2 of its
original size, the number of elements removed as each
tree is built will have declined to (N/2)? = (1/2)?N*.
Since (1/2)? > 1/2 no fewer than N” /2 are removed.
So the number of steps required to reach N/2 is no
more than N'~=7. The number required to reach N/4
is then (1/2)'=?N'=# — and so on forming a geomet-
ric series. So the number required to reach any fixed
level is O(N'~*). The number of trees in the forest is
then ®(N'~*) — and the total space is clearly linear.

A search for nearest neighbors within distance 7
is then made by following a single root-leaf path in



each tree establishing the required time bound. Each
tree can be considered independently and the results
merged to arrive at a single nearest neighbor. This
establishes the stated parallel complexity.

Finally we consider organizational time. The first
level of the first tree requires O(N) work to produce
projection values of each point in the space, and then
O(N) time to effect the split (linear time order statis-
tics). The next level considers a total of (1 —m)N
records, and so on, leading to O(N) overall time from
which the stated organization time bound follows. O

For example, if m = 1/2 there are O(v/N) trees in
the forest, and search time is O(v/Nlog N). Orga-
nization requires O(N3/2) time, but as always only
O(N) space is consumed. As m — 1 we expect T to
increase but the number of trees approaches N and
searches come ever closer to examining every point.
As m — 0 we expect 7 to decrease while search time
approaches the logarithmic ideal. The m parame-
ter then, in a sense, interpolates between exhaustive
large-7 search, and logarithmic small-7 search.

Our development above is very general and de-
scribes idealized forests. We now explain in what
sense they are idealized and begin our discussion of
concrete settings.

Algorithm 1 removes a fixed central proportion of
the points as each tree node is processed. This sim-
plifies analysis but, because 7 is defined as the mini-
mum diameter of all such central cuts, 7 might wind
up too small to be of any practical value. Also, the
projection function will not in general be 1-1, and
this detail must be considered in any implementation.
The user’s objective is a satisfactory tradeoff between
the conflicting goals of minimizing search time, and
maximizing 7.

One approach is to minimize search time given a
lower bound on 7. In contrast with the idealized
case, here it makes sense to cut a variable central
proportion — one of diameter 27. Notice in this case
that the construction recursion may terminate be-
fore reaching a single node. Since the choice of pro-
jector may affect this proportion, it may be wise to
invest additional time during construction to evalu-
ate multiple projectors. This corresponds to the idea
of selecting a vantage point for a vp-tree, or a cut-

dimension for a kd-tree. When fixed diameter cuts
are made a more complicated stopping rule for for-
est construction is needed. Otherwise a tiny ball of
points, smaller than 27 in diameter, will never be
assigned to any tree.

It is also important to note that while our focus is
on worst case performance, and there is no backtrack-
ing required to search for neighbors within distance
T, that backtracking can be performed as for vp-trees
or kd-trees in order to satisfy queries beyond 7.

Another difference between our idealized construc-
tion and practical implementations is that in the ide-
alized case points are stored only at tree leaves.

In the vp-tree case the projector is formed by se-
lecting an element v of subspace G' and computing its
distance to the query g and to every other element of
G. Having computed its distance to the query, there
is no need to examine v again, and we therefore view
it as stored at the interior tree node at which is was
used. So the difference is that the set G — {v—} is
split at each level of the recursion. When using unit
vector projection it is also possible to use an element
z of the database. Here too, it is unnecessary to ex-
amine z again since d(z,q) is easily computed given
<z,q>.

3 Performance in L, spaces

The Minkowski p-norm is denoted L, and defined
by [|Xl, = (3, |z:i[P)}/P for p > 1. A metric re-
sults from evaluating the norm of the difference of
two vectors. The Euclidean metric is Ly, the city
block metric is Ly, and by convention L., gives the
maximum absolute value over individual coordinates.

We begin with an asymptotic statement that allows
to understand the expected performance of excluded
middle vantage point forests in high dimensional in-
stances of these spaces given distributions such as the
uniform one.

Proposition 2 Let X 2 (21,...,24) be a vector of
i.i.d. random variables. Consider Y = ||X||, and let
0? denote the variance of Y about its mean. Then
o = O(dY/?=1/2) regarding p is fived and letting d —
00.



proof: Consider Y? = Z?Zl ||;:||P. Because the x;
are i.i.d. both the mean and variance of Y? scale
linearly with d. So relative to the magnitude of
the mean of Y7, its standard deviation shrinks as
d~'/2, whence the distribution of Y? values is in-
creasingly concentrated about its mean. Taking the
pth root to arrive at Y has the effect of scaling all of
these values downward by a factor of approximately
d'/?/d = d*/P)~1 5o the variance changes by a fac-
tor of d?/P=2. But the variance of Y? scales with
d, so the variance of Y scales with d2/?)~1  and its
standard deviation with d'/?~1/2, O

To keep its statement simple the proposition in-
cludes an i.i.d. assumption, but less is necessary. In-
dependence is required but the mean and variance of
each variable z; need not be the same. It is merely
necessary that the mean and variance of Y? scales
approximately linearly with d.

The proposition is then relevant because of two ob-
servations about uniformly distributed high dimen-
sional L, spaces. Firstly, that choosing a point v
at random, the distribution of ||z — v[|} over z in
the space exhibits the required linear scaling behav-
ior. Secondly, that making cuts during construction
(whether spherical or hyperplanar) in a high dimen-
sional space, leaves subspaces that for the purposes
of this proposition still behave like uniformly random
ones. The same is true for unit vector projection.

For Euclidean space (p = 2) we then expect ¢ to
be asymptotically constant with dimension. Then
the distribution of values the construction algorithm
is presented with at each step, becomes the same for
sufficiently high dimension. For L; we have that o
scales upward with d'/2, and for L it scales down-
ward with d—1/2. The result is that we expect the fol-
lowing behavior when using excluded middle vantage
point forests to search uniformly distributed point
sets:

1. The worst-case time to search for the nearest
neighbor within distance 7 of a query under the
Euclidean metric, is constant with respect to di-
mension.

2. Using L; the task becomes easier with increasing
dimension, or, one can scale 7 upward with d'/?

and maintain constant time.

3. For L,,p > 2 the task becomes harder with in-
creasing dimension. Interestingly, in the limit-
ing Lo, case, our approach is essentially worth-
less but range search techniques apply because
a search for neighbors within 7 is just a range
query of this form applying to every dimension.

Finally we remark that the case of unit vector pro-
jection in Euclidean space directly leads to the first
observation above without the proposition.

We have implemented our ideas as an ANSI-C pro-
gram. Figures 1 and 2 describe experiments which
confirm the behavior above for L and L,. It is im-
portant to reiterate that searching the forest involves
no decisions or backtracking, so that search time is
essentially constant. So:

1. Our experiments reflect the time required to per-
form the search for any given query.

2. Because of the nature of the search, all neighbors
within 7 will necessarily be encountered during
it.

Other experiments confirmed the expected behav-
ior when p > 2. Vantage point projection is used but
unit vector projection gives similar results. A vantage
point is selected at random from the current subset
of the dataset. The implementation forces fixed 7
cuts and stops forest construction when all remaining
points are failed to be assigned to a tree after a large
number of attempts. These points are then stored as
a simple list. The implementation also stores points
at interior nodes, not just at leaves. Finally, its split-
ting algorithm is general, i.e. does not assume 1-1
projection functions.

The uniform random case is, of course, of little
practical interest. While we give no general worst
case bounds it is important to note that performing
a fixed 7 construction will always generate a forest,
and a corresponding query-independent worst case
bound on search time for that particular point set.

We compare performance in our setting with kd-
tree search [15, 16, 4, 3], adapted from [23] as de-
scribed in [33] for radius limited search.
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Figure 1: The worst-case number of nodes visited by
an excluded middle vantage point forest search un-
der the Ly metric (p = 2), the uniform distribution
(10,000 points), and fixed 7 radius, does not in the
limit depend on dimension. The curves depicted from
bottom to top correspond to central exclusion widths
from 0.05 to 1.00 in increments of 0.05. Correspond-
ing 7 values are half as large.

10000

1000

i
o
o

Nodes Visited (Worst Case)

10 . . .
128 256 512 1024

2 4 8 16 3264

Dimension
Figure 2: For the L; metric (p = 1) and the setting
of figure 1, dimension invariance is observed if central
exclusion widths are scaled by v/d. For example, the
bottom curve corresponds to 7 = 0.025 for d = 2 and
T = 4/512/2 x 0.025 = 0.4 for d = 512. So for L;
the search radius may increase with dimension while
holding worst-case performance constant.
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Figure 3: The average number of nodes visited by kd-
tree search under the Ly metric (p = 2), the uniform
distribution (10,000 points), and fixed 7 radius, does
not in the limit depend on dimension. The curves
depicted from bottom to top correspond to central
exclusion widths from 0.05 to 2.00 in increments of
0.05. Corresponding 7 values are half as large.

Figure 3 shows the result of our experiment. The
same dimensional invariance is evident, but now with
respect to expected search time. As for our worst-
case structures, this follows from our earlier observa-
tions about projection distributions in high dimen-
sional spaces. The figure shows that expected search
complexity is somewhat lower than the worst case re-
sults of figure 1 where saturation is evident exclusion
width 1 is approached. For kd-trees, saturation is
delayed until roughly width 2.

The expected kd-tree search times are much lower
than the worst case values of figure 1. In fact, given
random queries, the probability is vanishingly small
that kd-tree search will cost as much as our worst
case search.

In the uniform case a query at the center of the
hypercube is costly for the kd-tree, and we have con-
firmed that essentially the entire dataset is searched
in this case. We observe that one might build a pair
of kd-trees whose cut points are offset to eliminate
these hot spots and perhaps even provide worst case
performance bounds in the radius-limited case.



4 Excluded middle trees vs.
Forests

By slightly modifying the forest construction algo-
rithm one can build a single 3-way tree. Instead of
adding the central elements to a bucket for later use
in building the next tree, we instead leave them in
place forming a third central branch. To search such
a tree one must follow two of the three branches: ei-
ther the left and middle, or the middle and right. We
remark that this tree structure was our first idea for
enhancing vantage point trees to provide worst-case
search time bounds.

Like the forest, this tree requires linear space, but a
simple example and analysis illustrates that its search
performance is usually much worse.

Consider the 3-way tree built by an equal 3-way
division, i.e. where the central exclusion propor-
tion is 1/3. Then the tree’s depth is logg N. The
path taken by any single search consists of a bi-
nary tree embedded within this trinary tree. So
N'0832 5y N0-63 nodes will be visited. But we have
seen that a forest with exclusion proportion 1/2 re-
sults in O(N?%log N) node visits, which is superior
despite the fact that the tree was built using a smaller
exclusion proportion (1/3 vs. 1/2).

Table 4 compares the performance of idealized
trees and forests for various database sizes and cen-
tral exclusion proportions. Figure 4 compares the
performance of actual trees and forests in a uniform
distribution Euclidean space setting. The results are
consistent with our analysis and the computations of
table 4. We briefly remark that for small 7, trees and
forests with a higher branching factor make sense.
Here the projected point set is partitioned into bands
with alternating ones corresponding to the excluded
middle of our 3-way construction.

5 Trading Space for Time

Until now we have considered linear space structures.
In this section we describe a general technique for
trading space for time. For analysis we will return to
the idealized setting in which construction removes
fixed proportions — not fixed diameter central sub-

Central Number of Elements
Proportion | 10> 10* 10> 105 107 108
0.100 0.52 037 0.23 0.14 0.08 0.05
0.300 0.87 058 0.42 029 0.18 0.11
0.500 1.21 096 0.83 0.63 0.44 0.36
0.700 1.40 131 1.18 1.03 0.88 0.77
0.900 1.50 164 1.65 1.58 1.51 1.51

Table 1: The relative search time ratio of an ideal-
ized excluded middle vantage point forest, to that of
a tree. The forest is better in almost all cases. No-
tice that its relative advantage can be quite large.
The tree is preferred only in the case of large central
exclusion widths, and then by only a small factor.
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Figure 4: A comparison of excluded-middle vantage
trees (dashed line) and forests (solid line) for the Ly
metric, d = 64, the uniform distribution, and central
exclusion widths of 0.01,0.10,0.25, and 0.50 corre-
sponding to the curve pairs from bottom to top. For
small widths the forest performs better and the ad-
vantage increases with database size (see the differ-
ence in curve slopes). This advantage reduces with
increasing exclusion width, and by 0.50 the tree is the
winner.
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Figure 5: a) An idealized illustration of the division
according to definition 1 of the projection of a point
set onto the real line. Subset M results from remov-
ing the central proportion of m elements. Assuming
a symmetrical distribution set M has diameter 27.
Subset L consists of everything below M in projected
value, and R of everything above it. b) An idealized
illustration of the tradeoff of space for time. Here an
additional proportion m, of central elements encloses
M and corresponds to two subsets R, and L,. Ele-
ments of R, are stored in R and also in L. Likewise
elements of L, are stored in both L and R. The re-
sult is that the effective search radius within which
the worst case time bound holds is extended from 7
to T+ 7,.

sets as in the implementation and experiments. This
will allow us to make calculations intended to illumi-
nate the engineering tradeoffs one faces in practice.

The 3-way split performed by algorithm 1 is il-
lustrated in figure 5(a). The central proportion m
is imagined to correspond to some fixed radius 7 as
shown. We motivate the construction in terms of 7
but will analyze it in terms of m.

When the projection of a query lies just to the
right of the dotted centerline, a search for a nearest
neighbor within 7 will explore M and R. Increasing
7 by some value 7, forces the search to explore L as
well.

To avoid exploring all three we store the points in
interval R, in two places (see figure 5(b)). First, they

are stored as always in L. Second, they are stored
with those of R. As a result of this overlap only M
and R must be explored as before. Points in interval
L, are similarly stored twice.

Continuing this modified division throughout for-
est construction yields a data structure that:

1. Includes the same number of trees as before,
since the size of the excluded central proportion
is unchanged.

2. Contains trees that are deeper, but still asymp-
totically of logarithmic depth. Tree depth is
log N.

2
(I—-m+maz)

3. The result is the same worst-case asymptotic
search times, but over the larger idealized radius
T+ Tg.

4. Provides this search-time benefit at thle cost

i Wi

of space. The deeper tree has N '°%2 U=m+mz)
nodes. Space for the entire forest is then:

1
2
log2 T—mma

_ 1
T—Togo l—m)

1+
O(N

For example, let m = 1/2 and m, = 1/4. Then
space is &~ O(N1-2067),

From another viewpoint the same space trade-
off may be used to reduce search time for a fixed
7. For example, an ordinary m = 0.5 forest pro-
vides O(N%%log N) searches. Letting m = 0.25 and
mg; = 0.25 reduces the time to &~ O(N%2933log N)
but space is increased from O(N) to ~ O(N!-2933),

Finally consider the interesting extreme case where
m = 0. Here the forest consists of a single bi-
nary tree. Search time is then O(log N) with space

1

O(IN &2 4z ).

6 Some Topics for Future Work

Excluded middle forests might be applied to problems
other than nearest neighbor search. They might, for
example, improve the effectiveness of decision trees,
an important tool for machine learning [24]. The
motivation here is that values near to the decision



threshold may be more difficult to classify based on
the selected decision variable.

We now discuss several possibilities related to near-
est neighbor search. For each fixed 7 our implemen-
tation generates a forest with some associated worst
case query time bound. Smaller 7 values, in gen-
eral, result in smaller bounds. Now suppose that a
forest is built with 7 = 1 and the system is then pre-
sented with a query. Next suppose that early in the
search a neighbor is encountered that is well within
the 7 radius, say at distance 0.37. Despite our good
fortune the remaining search will take no less time.
Root-leave paths in every remaining tree must be ex-
amined.

One idea is to build multiple forests. One for 7 =1,
and additional forests for 7 = 1/2,1/4,1/8, etc. Then
upon encountering a point at distance 0.37 the search
algorithm might consider aborting its processing of
the 7 = 1 forest and switch over to the 7 = 1/2
forest, which offers a better worst case time bound.

It is interesting to note that this decision to switch
can be made very easily by considering the number
of points remaining in the current forest, and com-
paring it to the worst case bound for the new one.
If the latter is smaller it makes sense to switch over.
Implementations may consider another factor in their
decisions. The distance from the query to all points
already visited might be remembered to avoid unnec-
essary metric evaluations when processing restarts at
the beginning of a new forest.

Another topic for future work involves two settings
in which our methods seem far from optimal: boolean
vectors with Hamming distance, and the L., case.

The boolean Hamming distance setting corre-
sponds to L1, and the number of errors we can tol-
erate while maintaining constant search complexity
for the uniform distribution grows with d'/2. But
experiments suggest that our forests do not compete
in practice with a particular simple method. If 7 is
the maximum Hamming distance to be tolerated, this
method divides the high-dimensional vector into 741
segments and exploits the fact that the dataset pro-
jected onto one of these segments may be assumed
to have Hamming distance zero to the query. Simple
hashing may then be used to maintain these projec-
tions. We are interested in better understanding the
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relationship of this simple technique to the ideas of
this paper. We remark that the same idea of dimen-
sional partitioning applies to any Minkowski metric,
but so far we can obtain an advantage only in the
Boolean case.

As described earlier, our methods grow weaker
with growing p, becoming essentially useless for L.
This is interesting since suddenly, with p = oo, the
problem becomes an instance of range search. We
speculate that ideas from range search might in some
form be of use before p reaches co — if only as an ap-
proximate solution to the nearest neighbor problem.

Finally we observe that in R? storing the data vec-
tors themselves requires O(nd) space. The tree/forest
we build can use O(1) space pointers to these vectors.
For this reason we can tolerate super-linear space in
the tree/forest, namely O(nd). We suggest that a
practical implementation for Euclidean space should
take advantage of this and also exploit the canoni-
cal/orthogonal basis optimizations mentioned in sec-
tion 2.

7 Towards a General High-
Level Procedure for Nearest
Neighbor Search

Our work towards a general and practical tool for
nearest neighbor search began with [32] and continues
with this paper. We envision a high-level procedure
that like the gsort() function from the standard
Unix library, views its underlying database through
a layer of abstraction. In the case of sorting, a com-
parison function is provided. For nearest neighbor
search projection and distance computation must be
supported.

Sorting is, however, a much simpler problem in as
much as practical algorithms exist with acceptable
worst case time and space complexity — indepen-
dent of the dataset. For nearest neighbor search we
suggest that a general tool must be flexible and sup-
port:

e User supplied metrics and projectors.

e The construction of dataset-specific solutions



giving worst-case query times for neighbors
within a specified distance.

e Heuristic backtracking searches beyond this dis-
tance.

e Control over the time invested in construction to
optimize the resulting data structure.

e Control over the time-space tradeoff. That is,
the ability to invest additional space to improve
search performance.

¢ Dynamic operation, i.e. the addition and dele-
tion of points from the data structure during use
(not discussed in this paper — but clearly pos-
sible).

e The ability to exploit the canonical/orthogonal
basis optimizations for L, mentioned in section
2.

We hope that the ideas and results of this paper
brings us closer to the development of such a tool.
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