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ABSTRACT

We argue for a surficial pronunciation model: a model
without underlying forms. The surficial model outper-
forms a traditional generative model by a significant margin
on conversational speech (Switchboard) as well as on read
speech (TIMIT). Our results suggest that the true mapping
from underlying forms to surface forms is too complex to be
accurately modeled using current techniques, and that we
would be best served to model the surface forms directly.

1 INTRODUCTION

Following the information-theoretic approach pioneered by
the IBM Speech Recognition group in the 1970’s [7, 1], and
lead by the generative phonology revolution [2, 6], the pro-
nunciation models in modern speech recognition systems
typically consist of a phonological lexicon coupled with a
statistical transducer. The phonological lexicon maps each
syntactic word to a small set of underlying pronunciations;
it is typically designed by hand. The statistical transducer
maps each underlying form to a larger set of surface vari-
ants; it is induced from data.

The original IBM speech recognition system generated its
underlying forms using a hand-crafted pronunciation dictio-
nary and a manually designed context sensitive grammar.
Next, each segment in the underlying form was replaced by
a stochastic finite state automaton, which generated surface
variants for that segment.

Little has changed in the intervening decades. Current
speech technology still employs a sparse pronouncing lex-
icon of hand-crafted underlying forms. When the vocab-
ulary is large or contains many proper nouns, then the
pronouncing lexicon may be generated by a hand-crafted
text-to-speech system [8]. In most systems, the mapping
from underlying forms to surface forms is left to the acous-
tic models. In more advanced systems, underlying segments
are mapped to their surface realizations using a statistical
decision tree [9].

In this paper, we argue for a surficial pronunciation
model: a model without underlying forms. We demonstrate
that a surficial model outperforms a generative model by a
significant margin, both on conversational speech (Switch-
board) and on read speech (TIMIT). Indeed, our surficial
model is within 4% of the best performance achievable by
any pronunciation recognition system on Switchboard. Our
results suggest that the true mapping from underlying forms

to surface forms may simply be too complex to be accurately
modeled using current statistical techniques. If so, then we
would be best served to model the surface forms directly.

The remainder of this paper consists of four sections.
Section 2 describes our pronunciation model. Section 3
presents recognition results on the Switchboard corpus of
conversational speech. Section 4 presents recognition re-
sults on the TIMIT corpus of read speech. Section 5 con-
cludes with some speculative remarks.

2 HIDDEN PRONUNCIATION MODEL

Our hidden pronunciation model consists of two trivial
probability models: (i) the probability p(w,z|L) that a
word w will have hidden pronunciation z according to
the lexicon L, and (ii) the probability p(z,y|M) that the
stochastic transducer M will generate the hidden pronunci-
ation z and the observed pronunciation y. From these two
models, we derive the joint probability

p(w,y|M) = Y plw,z,y|M)= > p(wlz, L)p(z,y|M)
TEA* z€L(w)

of the word w and the observed pronunciation y. This is
a giant finite mixture model consisting of |L| components.
When the stochastic transducer M is memoryless and inde-
pendent of the syntactic word — as it is for our experiments
— then this model has only O(|L| + k®) parameters for a
phonetic alphabet A of k symbols. The model parameters
may be optimized using expectation-maximization [10, 11].

For each observed pronunciation y, the minimum error
rate classifier outputs w

W = argmax, {p(w|y, M, L)}
argmax,, {p(wa yle L)}
= argmax,, {ZzEA* p(w,z,y|M, L)}

= argmax, {EweL(w)p(w, z,y| M, L)}

where L(w) is the set of pronunciations for the word w
according to the lexicon L. This decision rule correctly ag-
gregates the similarity between an observed pronunciation
y and all hidden pronunciations for a given word.

The central question raised by the surficial model is how
to construct the pronouncing lexicon L. In the generative
approach, we carefully craft a sparse lexicon of underlying
forms and then rely on the transducer M to map each lexical
entry to its surface variants. In the surficial approach, we



crudely construct a rich lexicon of surface forms from the
entire training corpus, and rely on the transducer M to
generate subtle variations in the hidden pronunciation. The
surficial lexicon contains every observed pronunciation for
every word in the training corpus.

It is important to distinguish hidden variables from un-
derlying forms. The generative and surficial approaches
both use hidden variables; only the generative approach
uses underlying forms. In the generative approach, an un-
derlying form represents the irreducible information content
of a given surface form and the transducer encodes the pre-
dictable information of a given language’s phonology. In the
surficial approach, the hidden pronunciation z is an actual
pronunciation (ie., a surface form), and the transducer en-
codes only the variability across pronunciations. Our use of
hidden variables is a modeling technique, employed princi-
pally to overcome the weakness of the stochastic transducer.

The surficial approach enjoys a number of advantages in
addition to its superior recognition performance. Firstly,
the lexicon is constructed without costly human interven-
tion. Indeed, it may be constructed entirely automatically
from the aligned output of a speech recognition system. Sec-
ondly, the model has very few parameters and is not prone
to overfitting. Thirdly, the surficial approach outperforms
the generative approach by a significant margin on the most
difficult speech corpus (Switchboard). Fourthly, the surfi-
cial approach offers the promise of instantaneous learning of
new words and new pronunciations in real-time (ie., without
batch-optimizing any parameters in the model), because the
power of the model comes from the pronunciation lexicon
rather than the transducer.

3 SWITCHBOARD

We have tested our approach on Switchboard [4]. Over
200,000 words of Switchboard have been manually as-
signed phonetic transcripts at ICSI [5]. We partitioned the
available transcripts 9:1 into 192,879 training samples and
21,431 test samples. We report recognition results for three
experiments; see [10, 11] for additional details. In experi-
ment E1, we used the standard Switchboard pronouncing
lexicon. In experiment E3, we built a pronunciation lexicon
directly from the training corpus. The test corpus contains
512 samples whose truth value does not appear in the E3
lexicon. In experiment E5, we merged the E1 and E3 lex-
icons in order to obtain a surficial model that includes at
least one pronunciation for every word in the test corpus.
The following table presents the essential characteristics
of the lexicons used in the three Switchboard experiments.

entries || novel entries
entries | /word || forms | /sample
E1l || 70,952 1.070 2908 1.895
E3 || 22,140 2.583 1773 9.434
E5 || 93,092 1.404 1307 11.329

The first two fields of the table pertain to the lexicon alone.
‘Entries’ is the number of entries in the lexicon and ‘en-
tries/word’ is the mean number of entries per word. The
final two fields characterize the relation between the lexicon
and the test corpus. ‘novel forms’ is the number of samples
in the test corpus whose phonetic forms do not appear in the

lexicon, and ‘entries/sample’ is the mean number of lexical
entries that exactly match the phonetic form of a sample in
the test corpus.

The minimum error rate achievable by any decision func-
tion on the Switchboard test corpus alone is 7.55%. If
the decision function must be consistent across the entire
Switchboard corpus, then the minimum error rate achiev-
able on the test corpus is 8.65%.

Our techniques give a 18.61% word error rate using the
E1 lexicon and a 12.19% word error rate for the E3 lexicon
if we drop the 512 out-of-vocabulary samples from the test
corpus. If we merge the E1 and E3 lexicons, then the error
rate is 12.63% on the full test corpus. Since the minimum
error rate is 8.65%, the surficial approach reduces the error
rate of the generative approach by a factor of 2.5.

4 TIMIT

We have also tested our approach on TIMIT [3]. We parti-
tioned the TIMIT transcripts into 30,132 training samples
and 11,025 test samples according to the TIMIT instruc-
tions. Experiment E1 used the standard TIMIT lexicon,
while experiment E3 used the training corpus for its lexi-
con. Due to the small size of the training corpus and the
artificial design of the TIMIT protocol, the test corpus con-
tains 2,897 samples (26.38%) whose words do not appear in
the training corpus.

The following table presents the essential characteristics
of the lexicons used in the three TIMIT experiments.

entries || novel entries
entries | /word || forms | /sample
E1l 6,233 1.001 8,564 0.243
E3 || 11,623 2.376 4,312 1.309
E5 || 17,856 2.869 3,958 1.551

The minimum error rate achievable by any decision func-
tion on the TIMIT test corpus alone is 4.91%. If the de-
cision function must be consistent across the entire TIMIT
corpus, then the minimum error rate achievable on the test
corpus is 5.69%.

Our techniques give a 17.36% word error rate using the
E1 lexicon and a 14.19% word error rate for the E3 lex-
icon if we drop the 2,897 out-of-vocabulary samples from
the test corpus. If we merge the E1 and E3 lexicons, then
the error rate is 16.68% on the full test corpus. Although
the surficial model outperforms the generative model by a
significant amount, its advantage is not as great as it is for
Switchboard. We believe that this is due to the small size
of the TIMIT corpus and the artificial nature of the TIMIT
protocol.

5 CONCLUSION

Given the simplicity of our pronunciation model, and its
surprisingly high performance on these difficult tasks, our
results argue for the elimination of underlying forms in
pronunciation models. The true mapping from underlying
forms to surface forms may simply be too complex to be
accurately modeled using current techniques. If so, then we
would be best served to model the surface forms directly.
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