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Abstract

Approximate string comparison and search is an important part of applications that range
from natural language to the interpretation of DNA. This paper presents a bipartite weighted
graph matching approach to these problems, based on the authors’ linear time matching
algorithms?. Our approach’s tolerance to permutation of symbols or blocks, distinguishes it
from the widely used edit distance and finite state machine methods. A close relationship with
the earlier related ‘proximity comparison’ method is established.

Under the linear cost model, a simple O(1) time per position online algorithm is presented
for comparing two strings given a fixed alignment. Heuristics are given for optimal alignment.
In the approximate string search problem, one string advances in a fixed direction relative to
the other with each time step. We introduce a new online algorithm for this setting which
dynamically maintains an optimal bipartite weighted matching.

We discuss the application of our algorithms to natural language text search, including
prefilters to improve efficiency, and the use of polygraphic symbols to improve search quality.
Our approach is used in the LIKEIT text search utility now under development. Its overall
design and objectives are summarized.
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1 Introduction

Search and the implied process of comparison, are fundamental notions of both theoretical and
applied computer science. The usual case is that comparison is straightforward, and attention
rests mainly on search. Given finite strings over a finite alphabet 3, one might for example define
comparison to be a test for equality, and the well known dictionary problem arises. That is: organize
a set of strings for effective storage and retrieval of exact matches. Given a short string o and
a much longer one 3, one might also strive to efficiently locate occurrences of « in B. This is
sometimes called the string matching problem [8].

When the comparison method is generalized to allow inexact match, the resulting ideas,
algorithms, and data structures become somewhat more complicated. Despite the added complexity,
this research direction is important because the resulting algorithms are frequently of greater
practical value. This is the case because almost all naturally occurring strings are the result of a
generative process which includes error and ambiguity. Examples include natural language text, the
speech signal, naturally occurring DNA — and just about any other sequence which corresponds to
measurement of a natural process.

Perhaps the most natural generalized comparison method relaxes the requirement of exact
equality to admit a bounded number of errors. Each such error is typically restricted to be either an
insertion, deletion, substitution, or sometimes a transposition of adjacent symbols. Given a query
string, it is then possible to build a finite state machine (FSM) to detect it, or any match within the
error bounds, within a second string. We will refer to this approach generalizations of it as FSM
methods. The recent work of [10, 12] demonstrates that text can be scanned at very high speeds
within this framework for comparison.

Another well known approach to generalized string comparison computes edit-distance (ED),
which measures the least costly transformation of one string into another using some set of primitive
operations. The most common choices of primitive operations are insert, delete, substitute, and
sometimes adjacent transposition. A simple dynamic program computes this distance in quadratic
time, i.e. proportional to the product of string lengths. See [11] for a discussion of these and related
algorithms which we will refer to as ED methods.

Both the FSM and ED approaches rather strictly enforce temporal ordering. In most applications
this is to some extent desirable. We observe however that similar strings from natural language
exhibit strong local temporal agreement but frequently include global ordering violations. More
concretely, words or entire clauses might be rearranged with the result nevertheless “similar” to the
original. For example, the strings “ABCD” and “DCBA” are maximally distant with respect to
edit distance’. To transform the first into the second, ‘A’, ‘B’, and ‘C’ are first deleted, and then
‘C’, ‘B’, ‘A’ are inserted. This is not disturbing at the word level, but if each symbol is replaced by
a word, significant divergence from human similarity judgment becomes apparent.

This paper presents a formal basis for string comparison and search which is entirely distinct
from both the FSM and ED paradigms. It represents a computationally affordable solution to the
problem of preserving an emphasis on local temporal ordering, while allowing global permutation.
Our framework reduces string comparison to multiple instances of the bipartite weighted matching
problem, or as it is sometimes called, the assignment problem. The bipartite graph’s two parts
correspond to the strings being compared. The nodes are symbols or, more generally, features
present at each string position. Edges connect symbols in one string with those in another and are
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Figure 1: String Comparison by Bipartite Weighted Matching

given costs which vary with the magnitude of positional displacement. Local temporal ordering is
emphasized by defining features which consist of the polygrams of varying lengths found at each
string position. The overall solution is then superposition of assignment problems for each distinct
polygram. The sections that follow describe our method in greater detail.

The “proximity comparison” method is a related approach used in several commercial spelling
error correctors and information retrieval products. We show that this earlier method may be
viewed as an approximation to the assignment problem we solve exactly. Its principal virtue is
the algorithm’s simplicity and resulting speed. However proximity comparison requires two passes
over the strings being compared while we demonstrate that exact solution is possible with only
one. In both cases O(1) time is spent processing each symbol. Thus the algorithms of this paper
essentially supplant the proximity comparison approach. Polygrams and other context sensitive
feature symbols were used in proximity comparison based applications, but for practical reasons,
polygram length was generally limited to two. The “Friendly Finder” program? is an example of
a proximity comparison based database retrieval system based entirely on 1 and 2-grams and their
positional relationship. More recently Damashek and Huffman [5, 6] have developed a large scale
text retrieval system based entirely on polygrams.

It is convenient to imagine two strings a and (8 arranged on top of one another as in Figure 1.
In this example the graph’s nodes consist of unigrams only, i.e., single letters. In the ‘linear-cost’
model the matching’s cost is determined by simply adding the horizontal displacements of each
graph edge, and imposing a penalty based on the number of unmatched nodes. It is evident from
the figure that a lower cost matching would result if o were shifted left by one position. This
illustrates that the cost of an optimal matching is a function of the string’s relative ‘alignment’. In
some applications fixed alignment is assumed while others require that alignment also be optimized.
In the case of string search, the long g string is imagined to advance leftward with each time step.
Then problem then is to maintain an optimal matching dynamically as time advances and the
alignment changes. We’ll describe this problem in greater detail later and describe an algorithm
which is somewhat more efficient than the obvious solution which finds an entirely new matching
for each step.

Figure 1 illustrates that each edge in the matching connects identical symbols. Thus, for a given
alignment, the overall matching problem may be decomposed into a union of subproblems — one for
each alphabet member. We will show that each of these may be further decomposed into ‘levels’.
The level decomposition is trivially produced in one-pass using what amounts to the “parenthesis
nesting algorithm”. Finally, for each level, a simple one-pass O(1) time per node algorithm finds
the optimal matching. Since the combined sizes of all subproblems equals the size of the original
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problem, the original problem is solved in one-pass, using O(1) time per symbol.

Finally we discuss the text search application and techniques which improve processing speed
and search quality. Polygraphic symbols of variable length are employed at each node to increase
the system’s sensitivity to local ordering changes. Before searching for the optimal matching and
alignment, several prefilter stages are employed to effectively rule out most candidates. The LIKEIT
system now under development combines these techniques. In practice a database record may be
located given almost any query which remotely resembles it. The system is character and polygram
oriented and does not make any effort to extract words from the query or the database. It is
perhaps best described as an approximate phrase retrieval system which tolerates re-ordering while
considering word proximity.

2 Theoretical Foundations

2.1 Bipartite Matching for String Comparison

We start with the mathematical definitions of strings, of bipartite matchings and of the cost of a
matching. In spite of the mathematical abstraction of the definitions we present, the underlying idea
is quite simple; namely, given a query string o and a database string 8 we wish to find an optimal
one-to-one assignment of symbols occurring in a to occurrences of the same symbols in . Here
‘optimality’ is measured in terms of the distance from a symbol in « to its assigned symbol in 3.
The ‘distance’ corresponding to each such symbol assignment depends on our choice of alignment
for a relative to 8. For this reason, our definition of a string will specify not just its contents, but
a position along the integer number line. The notion of an optimal assignment is then well-defined
since a position is implicit in the definition of each string. Later we will consider a higher level
optimization problem, namely that of varying the relative position (alignment) of the strings so as
to optimize (minimize) the assignment cost.

A string is intuitively a sequence of characters over a finite alphabet ¥; formally, a string « has
a domain [k,m] = {k,k+ 1,k +2,...,m} and is a mapping « : [k,m] - £. We denote by «(7)
the symbol at position 7 of a. Notice that only when a string’s domain is [1,m] is a(i) really the
i-th symbol. Allowing domains more general than [1,m] makes it easier to describe the process of
searching for an optimal alignment, and the process of searching for approximate occurrences of «
in 3.

Let a be a string with domain [k,m|. If n € Z, then we let a<n denote the string 8 with
domain [k — n,m — n] such that (i) = a(i + n). The length, |a, of a is equal to m — k + 1,
the number of symbols in «. We use «,(,7,... as meta-symbols for strings and o,7,... as
meta-symbols for symbols from 3.

Definition Let a and S be strings. A (bipartite) matching of « into ( is a partial one-to-one
mapping 7 : dom(a) — dom(f) such that B(n(i)) = a(i), for all i € dom(w). We denote by |r| the
number of values where 7 is defined.

A cost function c(-) is a mapping from NU{L} to R. The two-sided cost of a matching 7 under
a cost function c is equal to

A oyey + S el — i)
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The one-sided cost of a matching 7 from « into 3 is equal to

(o = lale(L) + D elln(s) —i]).

i€dom(a)

The two-sided cost is more useful in the string comparison problem where one wants a notion of
the distance between a and §; on the other hand, the one-sided cost is more useful for the string
search problem where one wants to know to what extent « is contained within 3. Note that if
a and [ are equal length, then the one-sided and two-sided costs are identical.

Definition We write dist(a, §) to denote the optimal two-sided cost of a matching from a to 3.
The function dist enjoys the property of being a metric:

Theorem 1 Let the cost function ¢ be non-decreasing and satisfy ¢(0) = 0 and c(i) +¢(j) > c(i+7)
for all i,5 > 0. Then dist(-,-) is a metric. That is, dist(a,a) = 0, dist(a, ) = dist(8,a) and
dist(a, B) + dist(8,) < dist(a,7y), for all a, B and .

Proof The properties dist(a,a) = 0 and dist(a, §) = dist(f, o) are immediate from the definition.
For the triangle inequality, let let 7 and 72 be a minimum cost matchings of @ and (8 and of
B and -y, respectively. Form their composition 73 = 7 o mo. It will suffice to show that the cost
of w3 is less than or equal to the sum of the costs of m; and my. For this, it is convenient to
reexpress the cost of 73 as

. : 1 1
Y em@ i)+ Y td 4 Y (),
i€dom(ms) iedom(a)\dom(m3s) iedom(y)\ran(n3)

and to think of the costs of w1 and my being expressed in similar form. Now consider the five
following kinds of values i € dom(a) and k € dom(vy) that contribute to the cost of m3:

i ¢ dom(m1): Such an i contributes $c(L) to cost of 7y and, since it is not in dom(rs), contributes
the same to the cost of 3.

i € dom(m) \ dom(m3): Such an i contributes 1c(L) to the cost of 73, and since (i) ¢ dom(ms),
m1(i) contributes $¢(L) to the cost of .

k ¢ ran(mz): Such a k contributes 3¢(L) to the cost of 3 and the same to the cost of .

k € ran(mz) \ ran(ms) : Such a k contributes J¢(L) to the cost of 73, and since 751 (k) is not in
ran(m), T, (k) contributes s¢(L) to the cost of 7 — 1.

i € dom(ms): Then 7g : i > ma(m1(2)) contributes c(|ma(m1(2))—i|) to the cost of 3. Corresponding
to this, there is a contribution of ¢(|m1(7) — i|) to the cost of 71 and a contribution of
c(|me(m1(2)) —m1(2)|) to the cost of mo. And by the fact that c satisfies the triangle inequality,

c(lme(mi(d) —il) < e(lma(mi(i)) = mi()]) + e(lma(7) — ).

In every case the contribution to the cost of 3 is less than or equal to the sum of contributions to
71 and 7. Od



There are a large number of enhancements that can be made to the definitions of cost and
distance. For example, it is possible to assign every character a real-valued weight and then weight
the costs proportionally to the weight of the character. It is also possible to more heavily weight
characters near the beginning of a, etc. These enhancements can be very useful in practice to
improve the perceived quality of the optimal assignment; however, they make little difference to the
algorithms described in this paper, so we shall use just the simple notion of cost as defined above.

In [4] the authors have developed linear time and near-linear time algorithms for finding
minimum cost bipartite matchings when the cost function is concave down. Although space does
not permit us to review the details of this algorithm, we shall review a few keys aspects of the
algorithm which are needed in the case when the cost function is linear (i.e., when ¢(i) = ¢ - 4 for
some constant co > 0).

For simplicity assume that « and [ are both strings with domain [1, n] I Let ¢ be a symbol
which occurs at position i in «, i.e., a(i) = 0. Then level,(i) is equal to the number of o’s that
occur in aft, — 1] minus the number that occur §[1,7 — 1]. Similarly, if 7 = £(j), then levelg(j)
is equal to the number of 7’s in «[l,%] minus the number in S[1,7 — 1] minus 1. A simple, but
important, fact about optimal matchings is:

Proposition 2 ([1, Lemma 1] or [4, Lemma 4]) Let ¢ be concave down and assume c¢(L) > c(i) for
all i. There is an optimal cost matching m such that, for all i, level,(i) = levelg(n(i)) whenever
(1) is defined.

Proposition 2 provides the first step towards an algorithm for finding an optimal matching. This
first step is to separately consider each symbol ¢ and to calculate the level of each occurrence of o
in both a and g; for each level £, we can separately find an optimal matching on the ¢’s at level /.
Taking the union of the these matchings gives an optimal matching for the original strings. This
allows us to reduce the problem of finding the optimal bipartite matching between « and G to the
following problem:

Definition Let i1 < ip < -+ < i; be positions of a symbol ¢ in @ and j; < jo < -+ < 7, be
positions of ¢ in . Also suppose r equals either ¢ — 1 or ¢, and that i, < j, and j, < iq41 for
all a. (For example, these occurrences of o are all the occurrences of o at a given level.) The
alternating matching problem for these occurrences of ¢ is to find a maximal partial mapping 7

from {i1,...,4q} into {ji1,...,7-} which minimizes the total cost
> ellmlia) = ial).
a€dom(m)

Note that dom(w) must contain r many points. When r = ¢, the alternating matching problem is
said to be balanced, otherwise it is unbalanced.

There is a dual formulation of this alternating matching problem where the first occurrence of o
in 0 precedes the first occurrence in «. In this case, r is equal to either g or to ¢ + 1, and j, < 44
and i4 < jg41 for all a.

IThis simplifying assumption holds without any loss of generality, since we can always pad strings with new
symbols which do not occur in the other string, so the strings then have the same domain. Then a common shifting
makes both strings begin with position 1.



A complete solution to the alternating matching problem, and thereby the matching problem,
for concave-down cost functions was given by the authors in [4]. A particularly simple, yet useful,
special case of this is when the cost function is linear. In this case, the following theorem explains
how the algorithm of [4] is simplified.

Theorem 3 Let the cost function be linear (and c(L) arbitrary). Let an instance of the alternating
matching problem be given as above. Then the minimum cost matching w is one of the following:

(a) If r = q, then w(ig) = jo for all iy ’s.

(b) If r =q+ 1, then there is some 1 < b < r such that 7(is) = ja for all a < b, such that 7(ip) is
undefined, and such that 7w(ig) = jo—1 for all a > b.

(¢) Dually to (b), if r = q — 1, then there is some 1 < b <1 such that w(ig) = ja for all a < b and
such that w(ig) = jat1 for all a >b.

Part (a) is a simple special case of the well-known Skier and Skis problem, see [7, 9]. Part (b) is
the generalization to unbalanced matching.

Proof Recall the notion of “jumper” from [4]. First suppose r = ¢. Since the cost function is
linear, there is never any need to put a jumper, assuming ties are broken in favor of not adding a
jumper. Therefore the optimal matching is the matching = (i,) = j, for all a.

Now suppose 7 = ¢ + 1. Following [4], this unbalanced problem is reduced to a balanced
quasiconvex tour by adding a new phantom occurrence of o at j.; the cost function is modified
so that an edge 7 : i, — j, contributes zero to the total cost (i.e., the new phantom node j, has
distance zero from all other nodes). As before, ties may be broken in favor of not using jumpers.
Therefore, by the methods of [4] the optimal matching 7 has some i, such that w(i5) = j, and
since there are no other jumpers, 7(i,) = j, for a < b and 7(iy) = ja—1 for a > b.

The case (c) is dual to (b) and essentially the same proof works. O

In [4] we proved that there is a linear time algorithm to solve the alternating matching problem of
Theorem 3 (since a linear cost function clearly satisfies the weak crossover condition; the algorithm,
as explained there, made two passes over the words from left to right. For the special case of a
linear cost function, there is a much simpler online algorithm which uses O(1) time per symbol:

Theorem 4 Let i1,...,%, and ji,...,Jq be an instance of the alternating matching problem and
assume w.l.o.g. that i1 < j1. There is an online algorithm, which scans the values i1 < j1 < ig <
j2 < ... in sequential order using constant time per value, which finds the optimal matching described
in Theorem 3.

Proof W.lo.g., we are in the setting of part (b) of Theorem 3 with » = ¢+ 1 and we are trying
to find the value b so that the matching m with 7(4p) undefined is minimal cost. Since the cost
function c is linear, we may assume w.l.o.g. that c(i) = i. Let ¢ = js —is and ds = is41 — js. The
cost of the matching 7 which omits %, from its domain is clearly equal to

b—1 q q b—1 b—1
s> dy =) di+ (ch—st) .
s=1 s=b s=1

s=1 s=1



Let my = Zg;% cs — Zz;% ds, since Y.?_,d, is constant, it will suffice to find a value b which
minimizes my. Now the algorithm is very simple: As i1, j1,...,%, are being read sequentially, the
value of my is updated with a single addition or subtraction per node; the minimum value of m,
is remembered along with corresponding value of b. At the end of the scan, the stored value for b
which minimizes m; describes an optimal cost matching and my gives its total cost.

Note the algorithm uses on a constant amount of space, since it is not necessary to store all the
m values, only the current values of m; and b plus the minimal value for m; seen so far and its

associated b need to be kept. O

2.2 Realignment

The previous section considered the problem of finding the minimum cost matching between two
strings a and (; will the positions of the two strings were held fixed. Frequently, however, it
is desirable to allow the strings to be shifted relative to one another to find a better matching.
An example of this would be matching the string a =“SOUR” against g = “DINOSAUR”. If the
strings are aligned so that both « has domain [1,4] and # has domain [1,8], then the total cost
will be ¢(4) + ¢(2) + ¢(4) + ¢(4). However, by realigning the strings and shifting 3 leftward by 4
(thereby letting it have domain [—3, 4], the total cost is reduced to ¢(0) + ¢(2) + ¢(0) + ¢(0).

We call the problem of finding the optimal shift of 8 the realignment problem. We give below
two heuristics for finding a good realignment. The first, based on ‘center-of-gravity’, is quick to
implement but does not always produce an optimal free realignment. The second, based on a
median calculation always produces an optimal free realignment, but is more time-consuming to
compute.

Let « and f be fixed strings; we define C), to equal dist(a, 5<n). The problem is find a n
which minimizes C,, and to find a corresponding optimal cost matching 7. The general idea is to
iteratively calculate an optimal match at a given alignment, then to calculate a “free realignment”
which improves the cost of the match, and then to repeat the process. More formally, we define a
free realignment as follows:

Definition Let o and [ be strings, let n € N, and let 7w : dom(a) — dom(B<n) be a partial
matching. A free realignment of @ and f<&n under 7 is specified by an integer parameter m: the
cost of the free realignment is equal to

D(m) = Y e((n(i) —m)—i]).

i€dom(m)

The general approach we take to realignment is based on the following algorithm:



Algorithm Realign(c, B,n)
Set n =10
Loop
Set m = optimal matching of a and f<Kn.
Let m = FreeRealign(m)

If m=0,
Ezit loop
Setn=n+m
Endloop

Here FreeRealign(m) is a function that computes a free realignment.
We suggest two possible methods of computing FreeRealign: the first is based on a ‘center-of-
gravity’ calculation: the center of gravity, CoG(w), of 7 is defined to equal

CoG(m) = —- > (n(i) —i),

|7T| i€dom(m)

rounded to nearest integer. Then one can use FreeRealign(n) = CoG(n). The CoG function is easy
to compute, is fast, and has worked well in the LIKEIT system described in section 3.4. However,
it is not guaranteed to always yield the best possible free realignment: an example of this is when
the string o =“ABC” is compared to the string § =“A - - - BC” where the dashes represent a long
string of blanks; in this case, the CoG free realignment would reposition (8 so that « is placed at
the two-thirds mark of 8. However, the optimal free realignment, i.e., the one with minimum cost,
would be to have the end of « positioned at the end of 3 so that the substrings “BC” are perfectly
aligned.

Our second free realignment algorithm is based on the median value (rather than the mean) of
the differences 7(i) — 4. The median p of a multiset X of integers is defined as usual; if X has
an even number of members, then there are two “middle” elements p; < ps of X and every p,
p1 < p < po is considered to be a median value for X. Let Median(n) be defined to equal the
(i.e., any) median of the multiset {pi(i) — i : ¢ € dom(w)}. Then the following theorem shows that
FreeRealign(m) = Median() is an optimal free realignment.

Theorem 5 FreeRealign(n) = Median(w) gives a minimum cost free realignment of a and 3
under .

Proof Recall 7 is a matching of a and f<n. W.lo.g., let ¢(i) =i for all 4 > 0. Consider the
difference between D(m) and D(m + 1):

Dim+1)-D(m) = 5 () —m—i+1]—|r(i) - m—i).
i€ dom(pt)

This is easily seen to be equal to the number of i such that (i) — % > m minus the number of 4
such that (i) —i <m. So D(m+1) > D(m) if and only if m is greater than the (or every) median
of {n(i) — i} and conversely, D(m + 1) < D(m) if m is less than every median of {n (i) —i}. From
this, it follows that D(m) is minimized when m is any median of the multiset {= (i) —i}. a



Figure 2: In Approximate String Search an optimal Bipartite Weighted Matching is maintained
within a fixed window as text slides by a stationary query.

Unfortunately, although the use Median for free realignment always provides an optimal free
realignment, this does not mean that Realign must converge to an alignment which is even locally
optimal. For example, suppose that @ =“BCA” with domain [1,3], that § =“ACBXA” with
domain [1,5], that n» = 0, and that = is the optimal matching for this alignment with 7 (1) = 3,
7(2) = 2 and 7(3) = 1. The (only) median value for this 7 is m = 0. However, the alignment is
not locally optimal, since there is a matching 7’ of @ and S<1 which has lower cost, assuming
2¢(2) + ¢(0) > 3¢(1); namely, 7'(1) =2, 7/(2) =1 and #'(3) =4.

For this reason, the above realignment remains merely a useful heuristic, which works well in
practice, but may fail to produce an optimal alignment in some rare situations. Both the CoG
function and the Median function are computable in linear time; but, in practice, the CoG is
slightly simpler and quicker to compute and seems to yield very good results. Therefore, the
Co(G-based free realignment is used in the prefilter stages of the LIKEIT system, while the Median
approach when computing the final matching.

2.3 Bipartite Matching for String Search

Our development above began by considering the problem of approximate string comparison given
a fixed alignment of the query string relative to a database string. We then discussed optimization
of this alignment. But in both cases the setting was record oriented, i.e., it was assumed that
« and (§ are complete records such as words, names, etc. In this section we consider the different
but related problem of approximate string search using our bipartite matching outlook. Here, one
of the two strings is generally much longer, e.g., a paragraph or an article, and represents the text to
be searched. The shorter string is thought of as the human generated query. The text is imagined
to be in motion passing by the query as depicted in Figure 2.

Our earlier record oriented approach could in principle be applied in this setting but several
problems exist. First, the local search heuristics introduced cannot be relied upon to produce
a global optimum alignment, so one would be led to recompute the entire matching for each
alignment. Second, under the linear cost function, the agreement between our mathematical notion
of similarity, and human judgment, appears to break down substantially. To see this consider
that varying the position of a distant matching symbol affects the score just as much as nearby
variations. If one is searching for keywords without regard to their position, this may be reasonable
behavior. But if the query represents a phrase or collection of words which are expected to occur
in close proximity, then those parts of the query which match only to distance locations, can easily
dominate the overall matching score. This in part motivated the authors to consider non-linear
quasi-convex cost functions in their earlier work.

The approach we take in this paper is to use linear costs, but restrict the matching process to
a moving window in the text indicated with a dotted line in Figure 2. That is, matching edges



are allowed only within the window. For each position of the text relative to the query, a different
bipartite matching may exist. The problem we face then consists of efficiently maintaining an
optimal matching as the text slides by.

As before, the problem separates immediately by alphabet symbol and we may therefore focus
on the subproblem corresponding to a single symbol. We will again use the notion of a level
decomposition but now must from time to time adjust it as the text slides by. Focusing on a single
level, it is important to realize that the optimal matching may itself change as the text moves;
before the need arises to recompute levels. We think of these two eventualities as events for which
an alarm is set sometime in the future, i.e. the events consisting of the recomputation of levels, and
of the optimal matching for a level. Until one of these alarms sounds, it is easy to see that each
matching edge will grow either shorter or longer by one with each time step. An edge will never
change growth direction between alarms because such a change would correspond to a releveling
event. Hence in-between alarms, the overall matching cost will change by a constant amount per
time step given by the total of each edge change.

The algorithms we describe work by computing for each symbol subproblem, the cost of the
optimal matching, the number of time steps before an alarm event, and the change in matching cost
per time step. The cost changes for each symbol are summed to form a single value. So until an
alarm sounds for some symbol, processing a time step consists of adding this single value to adjust
the cost of the optimal matching. A trivial outer loop manages the alarms and updates the cost
change variables.

In the worst case, alarms might sound on nearly every time step and our algorithm is no better
than the direct approach in which one merely recomputes the optimal matching cost for at every
time step. But in some problem domains such as natural language text, the alphabet may be
defined so that considerable savings result. For example one can define the alphabet to consist of,
say, 2-grams or 3-grams but exclude 1-grams. Doing this makes the problem considerable more
sparse and many subproblems will sleep for many time steps before any work is needed. So if w
is the window’s size, our algorithms might perform O(w) work per time step. One might hope to
find and algorithm with instead does O(1) or O(logw) work per step, perhaps on an amortized
basis. This represents an interesting area for future work. Failing such a result, one might analyze
algorithms like the one we present under the assumption of some distribution of strings.

Since the outer level processing is rather straightforward, we confine our discussion to the
matching subproblem for a single symbol which we will denote . Our algorithm represents the
occurrences of ¢ in 3 as a linked list which is formed before search begins. The occurrences in «
are also maintained as a linked list but this list is sometimes updated. An entry is added to the tail
when o is shifted onto (becomes the) right-end of a during a time step. The list’s head is deleted
when ¢ is shifted out of the window. Assuming a constant number of symbols are present at each
string position the maintenance of these lists is clearly O(1) cost per step. No lists need to be
formed for alphabet symbols in a which do not occur in 5.

Time steps are denoted ¢ and numbered from zero. We denote by s the offset of the windows
right edge from the first position of «. The list entries for « consist of an integer giving the time
step during which the particular o occurrence was shifted onto «. The list entries for 3 consist
of the position of each ¢ occurrence in the natural coordinate system in which the first position
is zero. At each time step the ( lists are effectively renumbered by adding ¢ — s to each element
before it is used.

We will show that a single scan through the two lists associated with o finds the optimal
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Figure 3: The cost of leaving the ith element unmatched minus the cost of leaving the last element
unmatched, increases by 2k with each time step.
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matching, its cost, and the two alarm intervals corresponding to leveling and rematching as
described above. This scan is performed when an earlier alarm sounds, and also when o either
appears on the right, or vanishes from the left of the window.

The first part of the process consists of merging the two lists to produce a single sorted list.
During the merge it is a straightforward matter to split the list into sublists, one for each level.
Also, during the merge, it is easy to set the leveling alarm by focusing on positions in the merged
list where a 3 list element is immediately followed by an « list element. The minimum gap between
such pairs gives the value of the leveling alarm and may be trivially maintained during the scan.**
We have seen in an earlier section that the optimal matching and its cost may be found for each
level in an online fashion, so we have only to show that the rematching alarm can be set as well.

Before turning to this we remark that an O(1) or O(logw) per step algorithm will need to
either leave leveling behind, or maintain the levels using non-trivial data structures. To see this
consider that a block of say 10 ¢ occurrence in a moving over a block of 10 ¢ occurrences in 3
will generate a leveling event at every time step. Moreover a quadratic number of matching edge
changes are generated despite the fact that the canonical skis and skiers matching might have been
used; avoiding all leveling alarms, matching edge changes, and rematching alarms. This is of course
only true for examples like the one above in which the number of ¢ occurrence in a exactly equals
the number in F. Still though it may provide intuition leading to an improved algorithm for the
general case.

Focusing now on an individual level, recall that it must consist of elements which alternate
between a and (. If level is of even length, then all elements are matched and no rematching is
required until the leveling itself changes. If the level is of odd length, then exactly one element will
be left unmatched in an optimal matching. Since we are processing the level online, we don’t know
in advance whether it is of odd or even length. But this poses no real problem since we may assume
that it is odd until we reach the end and perhaps find out otherwise.

Assume without generality that the situation is as in Figure 3, i.e. the level begins with a

**During the merge ties are broken in favor of 3.
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Figure 4: Graph of the difference computed in Figure 3. Minima correspond to optimal matchings,
and as time passes the A values increase at a rate which increases linearly from right to left.

element, that the level is of odd length, and that § contains the unmatched element. Part (a) of
this figure depicts the matching in which element i of § is left unmatched. Part (b) shows the
matching in which the last element is excluded. As « slides to the left, the edges to the left of ¢
in both parts of the figure, decrease in cost by 1. However the k edges to the right of ¢ behave
differently. In part (a) they grow more costly by 1 while in (b) their cost declines by 1. So the
difference between the cost of these two matchings, i.e. that of part (a) minus that of part (b),
increases by 2 with each time step. Of course this is true only until elements cross, but by that
time a leveling alarm will have sounded.

For each position ¢ we denote this difference A(z). The optimal matching corresponds to a
minimum of this function’s graph. We now imagine animating the graph with respect to time using
the 2k per step rule derived above. Each value A(i) may be expanded to become a function of
time: A(i,t) = A(¢) + 2kt where k denotes the level’s length minus ¢. It is apparent that the as
we move from left to right through a level, the rate of increase in A declines. This situation is
illustrated in Figure 4. So as time passes, the values of 7 which represent minima will in general
change. Notice that the the absolute vertical location of this graph does not affect the identification
of an optimal matching since the minima are unchanged by vertical translation. Also observe that
the differences A(i + 1) — A(i) are easily computed online from local differences within the level
list. So up to vertical translation, this graph may be built online starting from an arbitrary value
and accumulating A(7 + 1) — A(4) values.

We will show that as the graph is built from left to right, we can easily and in constant time
update the value of variable alarm which gives the number of time steps until the graph has a
new global minimum. This corresponds of course to a change in the optimal matching and is the
“rematching” alarm we require to complete our algorithm for string search. Two observations are
all that is needed to understand the short algorithm that follows. First, if during left to right graph
construction, a new global minimum is encountered, then no earlier point can ever replace it since all
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earlier points are increasing in value at a greater rate. Second, if the current point is greater than or
equal to the current global minimum, then the number of time steps that will pass before the current
point becomes smaller than the current global minimum, is exactly (A(2) — Apin)/ (206 — 4pin)) -
The following algorithm results:

Algorithm MatchAlarm
Set Appin = o0

For1=20,1,......
If AGG) < Apyin
Set Apin = A1), 4yin = 4, alarm = oo
FElse
t = (A(E) = Apin) /(20 — ipin))
If t < alarm

Set alarm =1

2.4 Relationship to Proximity Matching

In this section, we give a new characterization of what we here call the prozimity metric on
strings. This metric and various generalizations, developed primarily by the second author, has
been reported in [16, 13, 15, 2] and has been used extensively for natural language applications,
especially spelling correction, by Proximity Technologies and a large number of word processing
software publishers, and by Franklin Electronic Publishers in their hand-held solid-state electronic
books. Other product implementations include the PF474 VLSI circuit [14], the “Friendly Finder”
database retrieval system, the “Proximity Scan” subroutine library, and the “Clean Mail” program
for eliminating duplicates in mailing lists. We are proposing the bipartite graph matching approach
to string matching as an improvement over the proximity metric for string matching. The proximity
metric has a fast, efficient implementation and has proven to work well for many natural language
applications. However, we argue below that our new bipartite graph matching approach provides a
qualitative improvement over the proximity matching and, as we have already seen, the bipartite
graph based string matching can be performed efficiently in linear time, so its performance rivals
that of the proximity metrics.

Space does not allow a complete treatment of the proximity metric, but we do include its full
definition and proofs of the main new results. For the rest of this section, we let @ and 3 have
equal length and both have domain [1, n].

Definition We let i, j] denote the substring of a from position ¢ to position j.
For each symbol o, let Common,(c, 3) equal the minimum of the number of occurrences of o
in @ and the number in 3. Let

Common(a, B) = Z Commong(a, B)

oEY

which is the number of (occurrences of) symbols common to both a and 8. The prozimity similarity
of o and S is defined to equal

sim?(a, ) = Z Common(a[l1,1i], B[1,1]) + Z Common(al[i,n], B[i,n]).
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Note that Common(a[l,i], B[1,4]) is at most i. Therefore, sim®(a, B) is at most n(n 4 1). Finally,
define the proximity distance to equal

dist? (o, B) = n(n+1) — sim’(a, B).

It is clear that dist’(, ) has value 0 if and only if @ = 3, and has value n(n + 1) if and only
if & and B have no common symbols. Traditionally, the proximity metric has been a scaled version
of sim?; namely, 0(c, ) = sim?(a, 8)/(n(n +1)). The next theorem is proved in [13], and we omit
its proof here:

Theorem 6 Fiz n > 0. Then dist(a, 8) is a metric.

It has been known that dist’ acts somewhat like a matching-based string comparison method
with linear cost function; it also has been noted that the dist’ metric acts counter-intuitively when
there are unequal numbers of a given symbol in & and 8. These phenomena are both explained by
the following characterization of dist’.

Before giving the characterization of dist’, we give a slightly revamped definition of the dist
function; which is basically a reformalization of the discussion in section 2.1 where the algorithm
finding an optimal cost matching was implemented to first split symbols into alternating tours at
each level and then to find an optimal matching for each tour independently. We shall work with
the cost function ¢(i) =i and ¢(L) = (n+1). Let 0 € £ be a symbol and £ € N be a level number:
a (o,f)-matching m on « and [ is a maximal matching which maps (positions of) occurrences
of o at level £ in « to (positions of) occurrences of o at level £ in (. (Le., 7 is injective is either
total or onto.) The cost of such a 7 is equal to } ;¢ gom(r) (|7(é) —7]). Recall that the level £
occurrences of ¢ in a and B form an alternating tour and that Theorem 3 describes the ways in
which minimum cost (o, £)-matchings can be formed. If case (a) of Theorem 3 holds, then we say
a and ( are (o,£)-balanced; otherwise, there are unequal numbers of occurrences of o at level £ in
a and (3 and the strings are said to be (o, £) -unbalanced. We define dist, ¢(c, 3) to be the minimum
two-sided cost of (o, £)-matchings on a and 5. When there are no occurrences of o at level £, then
disty ¢(c, ) = 0. Proposition 2 tells us that the bipartite graph string matching distance can be

defined as
dist(a, B) = Z Z disty (e, B).

€Y leN

Now to give a similar characterization of dz'sta, let distg, ¢, be defined by:

otherwise

distd | — { dists g if a, (3 are (o, £)-balanced
0,0 n+l
2

Note that in the case where a and [ are (o,£)-unbalanced, dista(a,ﬂ) is just a constant,
independent of the positions of level £ occurrences of o. It may seem slightly counterintuitive
that the constant is ”T"'l instead of n + 1, since if o and B differ by exactly one character
substitution then dist’(c, 8) = n+ 1. However, in this case, there are two values of (o, ) for which

there is an unbalanced tour; one for the character in a and one for the substituted character in 3.

Each of there two unbalanced tours contributes ”T"'l as a distg’e which is a net contribution of
n+ 1.1
t Another way to think about why "T“ is used, is that distg,l is intended to be a variation of a two-sided cost.
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Theorem 7 dist’(a, 8) = Y > disth (a, B).

€Y LeN

Proof Let RHS(«a, ) be a shorthand notation for the double summation in Theorem 7. We shall
prove Theorem 7 by induction on Common(a, ). The base case is when « and  have no common
symbols. In this case, dist’(a,3) = n(n +1). Also, there are exactly 2n distinct pairs (o, £) such
that o occurs (once) in at level £ in one of the strings. Thus RHS(«, ) is also equal to n(n + 1).
For the induction step, pick a symbol o and a level £ such that o occurs in both « and
at level £. Let i1 < ip < --- < 44, and j; < jo < --- < j,, be the positions where o appears
in a, and in G respectively, at level £. Without loss of generality, i, < j, and j, < i441 for
all a. Let A, and Ag be new symbols and define o* to be obtained from « by replacing the o
at position i; with A, and define 8* similarly by replacing o at position j; with Ag. By the
induction hypothesis, dist’(a*, 8*) is equal to RHS(a*, 3*), so it will suffice to show that

dist’ (o*, 8%) — dist? (o, ) = RHS(a*,8*) — RHS(ev, ).

To prove this, first suppose the strings are (o, £)-balanced with ¢ = r. Consider the difference
between RHS(a*, 3*) and RHS(«, 3); in the former, the unmatched symbols A, and Ag contribute
n+1 to the distance, and in the latter, Theorem 3(a) tells us that the occurrences of o are positions
i1 and j; are matched to each other in the optimal (o, £)-matching, so they contribute j; — i1 to
the distance. Therefore,

RHS(a*,8*) — RHS(a,3) = (n+1) — (j1 — 11)-

Now consider the difference between dist’(o*, 8*) and dist’ (a, 8). For the former, the unmatched
symbols provide nothing to the “ Common” values. For the latter, the two occurrences of ¢ increase
Common(a[l,i], B[1,i]) by 1 for all 4 > j; and they increase Common(a[i,n],8[i,n]) by 1 for all
1 < 11. Therefore,

dist’ (a*, 3*) — dist? (0, B) = (n—j1 + 1)+ (i1) = n+1— (j1 —i1).

as desired.

Now suppose the strings are (o,£)-unbalanced with ¢ = r + 1. Consider the difference
between RHS(a*,3*) and RHS(w, 3); in « and 3, the (o,£) tour was unbalanced and contributed
dz'stg’z(a, B); however, a* and 3* are not only (o, £)-unbalanced but are also (Ay,0)- and (Ag,—1)-
unbalanced. Each of these two contribute an extra (n + 1)/2 to the distance, so

RHS(a*,3*) — RHS(a,, B) = (n+1).

Now consider the difference between dist’(a*, 8*) and dist’(a, 8). For the former, the unmatched
symbols provide nothing to the “ Common” values. For the latter, the two occurrences of ¢ increase
Common(a[l,i], B[1,i]) by 1 for all 4 > j; and they increase Common(a[i,n],[i,n]) by 1 for all
1 < j1. Therefore,

dist’ (o, %) — dist’ (0, ) = (n—j1+ 1)+ (j1) = n+ 1.

as desired. O
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The string matching algorithms based on bipartite graph matchings now are seen to present
several advantages over the proximity matchings. The principal two advantages are: (1) The
proximity matching approach is based on counting common occurrences of symbol and does not
give any assignment (i.e., matching) of symbols in one string to symbols in the other string. The
bipartite graph approach to string matching does give such an assignment. It can be potentially
very useful to have such as assignment; firstly, since it shows explicitly correspondences between
the strings, and secondly since the assignment can be used in a post-processing phase to further
evaluate the correspondence between the matched strings. (2) The second advantage is the proximity
matching seems to have serious flaws when symbols do not occur equal numbers of times in both
strings. For an example consider the strings o =“ABA” and f=“BAB” and v =“ABB”. Here we
have

dist’ (o, B) = 6 dist(a, 3) = 6
dist’ (a,y) = 6 dist(a,y) =4

(To normalize these distances to the range [0, 1], they should be divided by 12; e.g., dist(c,y) = 4
reflects the fact that o and ~y differ in exactly 1/3 (= 4/12) of their symbols.) But now one clearly
feels that + is more similar to o than § is. Therefore, the fact that dist’(a, 8) = dist?(a,7) is
undesirable, but dist(a,y) < dist(a, 5) is as desired.

See the conclusion for a discussion of the relative merits of the bipartite graph approach to
string matching and of the edit-distance (ED) approach to string matching.

3 Natural language search

3.1 Polygraphs

In the bipartite approach to string matching discussed above, a single string comparison is
decomposed into a linear superposition of matching problems; one for each alphabet symbol.
In this framework, even extensive permutation of a string can result in a new string which is very
close to the original, as measured by the minimum cost of a matching between the new string and
the original string. For natural language applications, this behavior presents problems because
perceptual distance increases rapidly with local permutational rearrangement, while the cost of an
optimal matching does not. Fortunately, there is a simple way to augment the string matching
algorithm discussed above, to overcome these problems; namely, to add additional polygraphic
symbols to the strings before performing the comparison.

The polygraphic symbols, called polygrams, consist of a sequence of ordinary symbols. That is, a
n-gram, is a sequence of m-symbols from the underlying alphabet 3. Before comparing the strings
a and (3, we preprocess them by adding, at each character position, new symbols for the n-grams
which end at that position of the string. To give a concrete example, LIKEIT system has used to the
following method of preprocessing a string « with domain [1,m]: for each value ¢ = 2,...,m and
each j such that 2 < j < min(i,6), let G;; be the j-gram comprising symbols a(i —j+1) - a(i);
then the polygrams Gi - G; mini,6) are inserted into o immediately following symbol i of . A
similar preprocessing is applied to #. The number 6 has been chosen empirically as it works well for
natural language text applications. For other applications, e.g., DNA sequence analysis, it might
be more appropriate to use polygrams of different lengths.
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This preprocessing makes « and (3 nearly six times as long, so one might fear that it would
increase the runtimes by a factor of six. However, in practice, the preprocessing greatly improves
the perceived quality of the matches and greatly reduces the run time of the search process. The
reason for the paradoxical reduction of the runtime of the search is that the prefilterings discussed
in the next section, will do a much more effective filtering thereby reducing greatly the number of
actual string comparisons which must be performed. Note that insertion of polygraphic characters
can be done efficiently, by a finite state machine scanning from left to right only.

The LIKEIT system also gives different weights to polygrams than to single symbols; namely, a
n-gram receives a weight of n, so the weight of a polygram is proportional to its length.

It should be noted that when polygrams are used, the optimal matching may not respect
overlapping polygrams. That is to say, even though two polygrams overlap in «, they may
be matched to widely divergent polygrams in 3. As an example consider matching the strings
a =“BART” and § =“BARCHART”. The initial 3-gram “BAR” in a would match the initial
3-gram of 3; whereas the overlapping 3-gram “ART” in a would match to the final 3-gram of .

Polygrams are only one kind of extra symbols that can be inserted into strings before matching
occurs. Other natural text search applications have used the addition of symbols encoding phonetic
information into the strings; in this approach, phonetic information is inserted into both « and S
using an algorithmic method (that is, the phonetic information is all inserted algorithmically, there
is no use of a dictionary).

3.2 Prefilters

Our matching approach may be thought of as a crude model for human similarity judgment. Even
though the corresponding are linear time and very simple, it is in practice important to consider
even simpler models and algorithms in order to increase search speed. Perhaps the simplest model
consists of comparing the set of polygrams which occur in both strings, along with their frequencies.
That is, ignore position entirely. This may be thought of as a crude projection of the matching
model so as to use a cost function which assumes a constant value for all matching edges independent
of edge length. It corresponds to the use of frequencies only in [5, 6]. Other model simplifications
involve approximations we have already seen. Examples are the use of free realignment only, the
Co(@ heuristic, and approximate solutions to each level’s matching problem. Another simplification
consists of dealing fewer polygram sizes. These simplified algorithms form prefilters which are
applied to the database in order to limit the search to a subset which is then processed by later
prefilters and ultimately by the final algorithm. As records are considered by a prefilter, they are
added to a heap of bounded size. The next prefilter reads from this heap and writes to a new one.
For particular domains, transaction logs or query models may be used to intelligently set the size of
these heaps so that some estimate of the probability of error (failing to pass-on the correct record)
is acceptable.

3.3 Alphabet Element Relationships

Our framework allows for matching edges only between identical characters. This in some sense
corresponds to a discrete metric on X, i.e. a distance function assuming zero only upon equality,
and unity otherwise. In many languages this is awkward and in some it may be an unacceptable
simplification. The simplest current practical technique known to the authors consists of mapping
each alphabet element to a string. The mapping then attempts to capture linguistic relationships.
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3.4 The LIKEIT Text Search Engine: Summary Preview

The ideas of this paper and the authors’ earlier work have lead to the development of LIKEIT;
a new text search engine for the Web [17]. The weighted matching approach represents a single
conceptual framework that deals with variations in word spelling, form, spacing, ordering, and
proximity within the text.

The system’s objective is to provide an easy to administer, distributed search service offering a
great deal of error tolerance, and a very simple user interface. The Web user’s query is communicated
to one or more a LIKEIT search servers and an HTML document is returned containing the most
similar information found. The optimal matching is visualized for the user by highlighting selected
characters in the returned text. Relationships between servers may be established to form a
distributed network search service which can include explicit hierarchy when desired.

When a database of roughly 50,000 bibliographic citations is searched for the query PROB-
LMOFOPTIMLDICTIONRY the title OPTIMAL BOUNDS ON THE DICTIONARY PROBLEM is
returned first. The search requires a little over two seconds on a 133MHz Pentium processor based
system. In a more realistic example, a search for “SAMBUSS” finds papers by the first author
as intended. Keyword-based systems such as GLIMPSE and WAIS cannot by design. We remark
that the algorithms of this paper might then find application in construction of front-end spelling
correctors for keyword-based systems such as these.

4 Conclusions and Future Work

There are several interesting directions for future work. Owur algorithms for approximate string
search might be improved to provide constant or nearly constant time bounds per time step.
Strategies for polygraphic indexing or hashing might be explored so that prefilters can more rapidly
limit the search’s range. General techniques for dealing with relationships between elements of 2
while retaining computational efficiency might be developed. The alphabet symbol weights and
other parameters might be in some way learned by the system. Finally, other application areas such
as DNA analysis might be explored.

To conclude, we review again some of the relative advantages and disadvantages between the
bipartite graph string matching (BGSM) algorithms discussed in this paper and prior edit distance
(ED) algorithms. First, our BGSM algorithms have the advantage of being online and taking
linear time; in contrast, ED algorithms are based on dynamic programming and require quadratic
time in general (but they can be made linear time if only a limited number of edit operations are
allowed). The BGSM algorithms give a better quality match when the strings being compared
contain substantial differences; whereas the ED approach gives a higher quality matching when the
two strings differ by only a few edit operations (e.g., three or fewer). This is primarily due to the
fact that the BGSM algorithms match distinct alphabet symbols independently. However, with
use of polygraphic symbols, this disadvantage of the BGSM algorithms can be largely overcome.
The ED distance algorithms have been widely used in text search applications. A precursor to
the BGSM algorithms, the proximity matching, has also been widely used. The BGSM algorithm
provides a qualitative improvement over the proximity matching; and is being deployed as a general
purpose tool in the LIKEIT text search package.
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