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Abstract

An Archival Intermemory solves the problem of highly
survivable digital data storage in the spirit of the In-
ternet. In this paper we describe a prototype imple-
mentation of Intermemory, including an overall system
architecture and implementations of key system com-
ponents. The result is a working Intermemory that tol-
erates up to 17 simultaneous node failures, and includes
a Web gateway for browser-based access to data. Our
work demonstrates the basic feasibility of Intermemory
and represents significant progress towards a deployable
system.
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1 Introduction

Archival publishing is a crucial aspect of our civiliza-
tion. Electronic media improves transmission of and
access to information, but the important issue of its
preservation has yet to be effectively addressed.

The importance of this issue is now apparent as the
general objective of preservation has received consid-
erable recent attention [6, 11, 2, 9, 7, 14, 10, 13]. In
addition, other projects such as [3] appear to be at a
formative stage. The notion of Archival Intermemory
was introduced in [8].

*The authors are listed in alphabetical order. At the time this
prototype was designed all authors were with NEC Research Insti-
tute, 4 Independence Way, Princeton, NJ 08540. The first author
is also affiliated with Georgia Institute of Technology, the third is
now with InterTrust Corporation, the fourth is also with New York
University, and the fifth with the University of Washington. Direct
correspondence to the sixth author at pny@research.nj.nec.com.

The Intermemory project aims to develop large-scale
highly survivable and available storage systems made
up of widely distributed processors that are individu-
ally unreliable or untrustworthy—with the overall sys-
tem nevertheless secure. Inspired by the Internet and
Web, but cognizant of the scope of Byzantine threats
to any public distributed system, this project further
targets self-organization, self-maintenance, and effec-
tive administration in the absence of central control.

Intermemory targets a much higher level of fault tol-
erance than other current approaches. A simple mirror
system that maintains 5 copies of the data can tolerate
the loss of 4 processors at the expense of multiplying
by 5 the total volume of data stored. Through the use
of erasure resilient codes [1, 12, 4], our current design
for Intermemory tolerates the loss of any 530 proces-
sors with essentially the same factor of 5 space usage.
The prototype is smaller and tolerates 17 failures with
essentially a factor of 4 in space.!

Another important difference between our project
and others is that Intermemory implements a simple
block-level storage substrate on which arbitrary data
structures may be built—rather than directly storing
files or other high-level objects. That is, it performs
the role of a disk drive in a conventional nondistributed
system. Viewed as a substrate, it frees digital library
(and other) system architects from many essential low-
level design tasks while not constraining the kind of
systems they can build.

This paper reports on a prototype implementation
of Intermemory while revising certain aspects of the
design given in [8] and giving additional details. The
prototype, IM-0, demonstrates:

e The successful cooperation of multiple (over a hun-
dred) subscribers to implement a simple Inter-
memory. We expect this limit to soon exceed a

1We describe in section 3.5 the metadata stored that accounts
for the word “essentially”. As described below our systems encodes
blocks in a manner that doubles their size. The prototype stores the
encoded block twice, once in complete form, and once in 32 pieces.
The full design stores the raw block once and the encoded block twice
(in 32 and 1024 pieces).



thousand as we incorporate more hosts and tune
the system.

e High availability: data can still be read even if up
to 17 subscribers fail.

e A general purpose distributed database synchro-
nization mechanism used for:

— Automatic dispersal of information through-
out the network

— Self-repair: damaged or lost data is automat-
ically replaced through a subscriber’s interac-
tions with its neighbors in the system.

As a side effect in the context of digital li-
braries, this solves the media conversion prob-
lem. That is, when a failed system is replaced
with a new one that may be based on a new
hardware storage medium, the contents of its
local memory are automatically rebuilt in the
new medium. Of course, i) it only solves the
problem for information that has already been
converted from its original form into Inter-
memory blocks, and ii) the system we have
described does not address preservation of a
memory/document’s semantics (see section 6
for additional remarks).

e A gateway to the Web that allows one to mount an
ISO-9660 CD-ROM image from the Intermemory
and access it with a browser.

Each subscriber runs a daemon process. In principle
these might be on machines located anywhere in the
world, but in this early prototype they are run within
a local area network in our laboratory. It is a proof of
concept implementation that to some extent addresses
all functional features of Intermemory in a less hostile
environment, closer to fail-stop than Byzantine.

The strategy of layering has been effective, and per-
haps essential, in the development of other highly com-
plex computer systems. Our aim as computer scien-
tists is to create a new low-level layer, a highly durable
medium for digital publication. This layer is part of
several contexts, most generally that of distributed file
systems and databases, but also electronic publishing,
and the specific context that provided our original mo-
tivation, that of archival preservation of digital infor-
mation.

Considerable attention in the literature has been de-
voted to the issue of preservation. The report of the
task force on archiving of digital information [7] is an
impressive and thoughtful presentation of general issues
along with a particular vision for a framework-level so-
lution. In the remainder of the introduction we briefly
discuss Intermemory from the perspective of the task
force’s framework. The rest of this paper describes an

early prototype that implements only a portion of our
overall design for Intermemory. So our discussion will
necessarily involve references to work in progress to-
wards a complete system.

The report envisions a national system of archives,
i.e. repositories of digital information. The archiving
function is viewed as distinct from that of a digital li-
brary.

In contrast, Intermemory aims to preserve the li-
brary’s contents while serving as a substrate upon which
digital library services can be built and provided. Also,
we view Intermemory and any resulting library and
archive as an international resource—observing that the
wide distribution of data increases survivability. We re-
mark, however, that a system of national (or corporate)
repositories independent of any digital library service
might be implemented using a private access-restricted
Intermemory.

Such a national system may prove necessary for le-
gal reasons pointed out in the report. One example is
the granting of legal authority to “rescue” culturally
significant digital information. The report concludes
that each repository must be held to a very high stan-
dard of survivability. We suggest that a benefit of im-
plementing such repositories using Intermemory is that
this standard can be much lower due to the large-scale
redundancy inherent in our design.

The report advocates “migration” as a key part of
the task force’s framework solution. They define this
as “the periodic transfer of digital materials from one
hardware/software configuration to another, or from
one generation of computer technology to a subsequent
generation.” For example, the information contained
in database records stored in one format today may be
extracted and stored anew using a subsequent database
management system.

Migration is contrasted with “refreshing” (copying
from medium to medium) and “emulation” (program-
ming one computing system to closely mimic another).
They assert that neither “sufficiently describes the full
range of options needed and available for digital preser-
vation.”

We remark that it is apparent that migration is a
complex undertaking, and we are concerned that it may
introduce errors that accumulate over time.

From the perspective of the task force’s report our
approach can be viewed as automated refreshing, with
future work towards a single succinctly specified univer-
sal low-level emulation environment layer.

The report refers to the computational environment
required to interpret an object as its context. Some
contexts seem inherently problematic for any approach.
Consider, for example, a digital object consisting of a
computer game, which depends in a critical way on its
host processor’s rate of execution, and on the detailed



behavior of physical interfaces such as joysticks, game
gloves, etc.

Our approach aims to provide long-term access to all
materials that have straightforward contexts, and might
then serve as the core of an archiving strategy. In this
scenario migration is reserved for critical and unusual
objects. By focusing migration efforts on fewer digi-
tal objects, we suggest that a larger amount of digital
information will be to some extent preserved.

Further discussion of the planned emulation com-
ponent of our Intermemory architecture is beyond the
scope of this paper and will be described in a later work.

The report also discusses “provenance”, which in the
context of archival science is described as referring to
the ability to prove the “chain of custody” of an object
tracing back to its source. This is part of the overall
task of maintaining the object’s integrity.

We remark that our work in progress towards a
security infrastructure for Intermemory directly ad-
dresses this issue using cryptographic authentication
techniques. These allow system data and metadata to
be traced back to an originator whose credentials are
also “provable” within the system.?

To close our discussion of the task force’s report we
turn to the “appraisal and selection” functions of a tra-
ditional library or archive, wherein objects are evalu-
ated and selected for inclusion in a collection.

A distributed community of library professionals
might continue to apply these functions to create a care-
fully regulated Intermemory, but other Intermemories
may operate with different versions of, or even absent
these functions. Because perfect appraisal and selection
is impossible without foreknowledge, we suggest that
these public Intermemories are complementary and may
lead to the preservation of key items that would other-
wise be lost.

In section 2 we describe the capabilities of our pro-
totype and the simplifying assumptions made in im-
plementing it. Section 3 presents many aspects of the
prototype’s internal design, and section 4 describes the
Web gateway. Finally, an overview of our project’s sta-
tus and future direction is given in section 6.

2 Prototype Capabilities

The IM-0 prototype contains two executables. The first
is the Intermemory daemon itself, and the second is a
control program that, although not required, is com-
monly used in our development and demonstration en-
vironment to start and kill daemons, and to collect error
and status messages from them. The following functions
are implemented:

20f course one must worry about the long-term strength of any
cryptographic system. We are aware of this concern and plan to
eventually address it in our scheme.

e Start a daemon on a specified processor.

e Write a block to an Intermemory address. The
system’s 64K byte blocks are numbered sequen-
tially from zero. The erasure resilient coded full
block is stored at one processor, and 32 fragments
are dispersed to other processors. The encoding is
such that any 16 of the 32 fragments are sufficient
for reconstruction.

e Read a block from an Intermemory address. If the
processor storing the full block is unavailable, the
system automatically performs a deep read, i.e.,
obtains 16 dispersed fragments and transparently
reconstructs the block.

e Kill an Intermemory daemon. This also deletes its
locally stored data.

e Start a replacement daemon.

Subscription is performed offline before the system is
started. Also, the security and distributed administra-
tion components of the complete system are not present
in the prototype, but it is suitable for use in an internal
network, such as our lab’s. Additional simplifying as-
sumptions relate to the timing of writes and processor
deaths: Our demonstrations perform all writes as part
of system initialization, after all daemons are started.
We assume no processor failures occur during this pe-
riod. Processor deaths are detected manually, and a
replacement daemon is started using the control pro-
gram.

Distinct from the core IM-0 prototype are utilities
we wrote that allow an arbitrary file to be copied into
Intermemory and then mounted under Linux as a file
system. The same Linux system runs an HTTPD dae-
mon so that any browser connecting to it can retrieve
documents stored in this Intermemory-based file sys-
tem. This is an example of an application built on top
of the Intermemory substrate.

A design goal for the Intermemory daemon is that it
should consume on average a small portion of its host
system’s resources—allowing users to contemplate run-
ning it on their personal workstation. The prototype
achieves this goal and as a result we are able to run
many instances of the daemon on a single computer
system. On a dual processor 400MHz Pentium II sys-
tem we have routinely run 20 daemons with little per-
ceptible impact on the system and believe that a much
higher loading will prove possible with appropriate sys-
tem tuning and configuration.

In a simple demonstration of the prototype’s capabil-
ities we start 100 daemons (20 on each of 5 hosts), write
a block, observe (via the control program’s condition re-
porting facility) the dispersal of fragments throughout
the system, and then read the block. Then, the dae-
mon holding the full block is killed and the block is



read again. This time, execution is slower because of
the overhead of reconstruction.

The demonstration we have prepared for the confer-
ence starts 13 daemons on each of 8 hosts with a ninth
host running the control program and a simulated user
process. A graphical output is shown in Figure 1. A
number of blocks are then written and the daemons au-
tomatically disperse the fragments. Random blocks are
now read. While these reads are occurring, five dae-
mons are killed, which causes deeps reads to occur. To
demonstrate self repair we enter a cycle where one dead
dead daemon is restarted with an empty database and
an live daemon is killed. The restarted daemons refill
their database during subsequent polls and no longer
cause deep reads.

Another possible demonstration initializes the sys-
tem with a multiblock file. It then kills 17 random dae-
mons, starts replacements, waits long enough so that
their contents have been restored, and then repeats the
process killing a new randomly chosen set of 17 dae-
mons. Finally, the multiblock file is read to confirm
that its contents have not changed.

Consider a similar test that kills 20% of the daemons
in each round. When the number of daemons exceeds
90 (so that 20% is above 17) some data loss is possi-
ble. But the chances that 18 of the 33 daemons hold-
ing the block and its fragments are killed is less than
Comb(33,18) - (.2)'8, which is less than 0.05%. Given a
higher degree dispersal, such as the value of 1024 called
for in [8], the situation improves. In this setting the
failure probability bound is reduced to 2.6 x 1075,

Finally, we used the mkisofs utility on Linux to
create a small ISO-9660 file system (the type found
on most CD-ROMs) and using the method mentioned
above demonstrate browser access to documents stored
in Intermemory.

We do not report performance measurements be-
cause it is expected that a complete Intermemory sys-
tem will exhibit rather different characteristics, so that
little would be learned from the exercise.

3 Prototype Design

3.1 Erasure Resilient Codes

Each 64K byte data block in our prototype Intermem-
ory is specially encoded as part of the write process.
The encoded version is twice the size of the original and
is partitioned into 32 fragments of 4K bytes. The point
of the encoding is that the original data block can be
reconstructed (decoded) given any 16 of the fragments.

This basic idea is associated with many names, be-
ginning with Reed-Solomon codes of algebraic coding
theory [4]. It was referred to as information disper-
sal in [12] where the application was similar to ours.
It is also associated with the phrase secret sharing in

cryptographic contexts, and most recently described as
erasure resilient codes® in [1], where highly efficient new
algorithms are reported for the encoding and decoding
operations.

Our prototype uses an algorithm for encoding and
decoding whose time complexity is quadratic in the
number of fragments [5].* Linear and nearly linear time
algorithms exist, however, and one of these will be sub-
stituted in our full implementation. We have performed
timings that suggest that, after this substitution, encod-
ing and decoding latency will be dominated by network
latency and transmission time.

The 32 fragments corresponding to a data block are
distributed to different daemons. We store the full block
in encoded form at a 33rd processor, which for effi-
ciency’s sake is contacted first during a read operation.?
If the reader fails to contact this processor, it attempts
to contact the other 32 until 16 fragments have been col-
lected. Decoding then produces the original data block,
transparently satisfying the read request. We refer to
the restoration of a block’s content from its fragments
as a deep read.

Neglecting overhead, the total space consumed in
storing a block in our prototype is four times the orig-
inal: two times for the encoded full block, and another
two for all the fragments combined.

For the block to be unreadable, the encoded full
block must be unavailable, as must 17 of its fragments—
for a total of 18 unavailable objects. In this sense the
system is 19-fold redundant. Notice that the space re-
quired is comparable to the 4-fold redundancy achieved
by deploying 3 mirror sites.

Our full-scale Intermemory design performs disper-
sal on a much larger scale as described in [8], achieving
531-fold redundancy while increasing space consump-
tion from four to just five times the original data.

Referring to the 32-way dispersal of the prototype as
level-1 (L1), the full-scale design adds a second level L.2.
Just as the encoded full block is divided to produce L1
fragments, each L1 fragment is further divided into 32
smaller L2 fragments giving rise to a 32-way dispersal
tree with 1024 leaves and the encoded full block at its
root.

To understand the rational for this design, consider

3Error correcting codes are a related but distinct concept. These
codes add specially computed bits to a data block such that the orig-
inal data can be recovered in the presence of a bounded number of
bit errors at unknown locations anywhere in the resulting enlarged
block. The original data is recovered so long as the total number of
errors is not too large. An erasure resilient code functions similarly
but assumes that some set of known bit positions are unknown, i.e.,
have been erased.

4We thank Michael Luby for allowing us to adapt his code for use
in our system.

5The particular encoding used by the prototype has the property
that the original block is a prefix of the encoded block. As a result
no decoding at all is required when reading it. The prototype stores
the complete encoded block to avoid reencoding it each time it must
disperse a fragment as part of routine system maintenance.



an alternative where 1024 fragments are dispersed in a
single level. Here, if the full block is unavailable, an ad-
ditional 512 network connections are required to read
the block. The L1 fragments provide a reasonably ef-
ficient backup for the full block since at most 32, and
as few as 16 successful connections are required. More-
over, launching this many connections in parallel is rea-
sonable in today’s computing environment while 512 is
not.

We have discussed the full design because the pro-
totype’s polling loop and database infrastructure, to
which we turn next, is fully capable of handling 2-level
dispersal. Our prototype is limited to a single level for
simplicity and because of the modest scale of our test
environment.

3.2 Metadata

In addition to maintaining the users’ data, the system
must maintain various metadata, e.g., the IP addresses
of daemons containing dispersed copies of a data block.
In the full system the metadata also includes admin-
istrative information such as cryptographic credentials
for each subscriber.

Most metadata is stored using simple replication. In
the prototype every subscriber maintains a complete
copy of these metadata records. An approach that
scales better with the number of subscribers is given
at the end of this section.

The system also contains metadata that exist in only
two daemons: A metadata record describing a fragment
that has been (or will be) dispersed from daemon A to
B is stored on only A and B.

3.3 Addressing

Our approach to addressing is an improved (simplified)
version of the scheme given in [8].

Each Intermemory block has an m-bit Intermemory
address A. In order to access A we need to determine
the Intermemory host storing the encoded full block for
A. To facilitate replacing failed processors, we split the
mapping from addresses to hosts into two parts.

IM-addr — VP# —e |P# X Port#

\\ VP# X VP# X o2 X VP#
Nbd(P)

We first map A to a ¢-bit virtual processor number
P, which is then mapped to a network address N con-
sisting of an IP address I and a port number S (mul-
tiple daemons can run on the same node, listening to
different ports; each such daemon is a separate virtual
Processor).

Users need not be Intermemory subscribers to read
it and may direct their read request to any functioning
daemon in the system.

If a daemon fails and is replaced (e.g., after a host
computer crashes or resigns from the Intermemory), we
need only change one entry in the P to N mapping,
and all Intermemory addresses previously mapped to
the dead daemon are now assigned to its replacement.

We also define a mapping from P to the set of vir-
tual processors that form the neighborhood of P, and a
mapping from A to the set of virtual processors form-
ing the dispersal tree of A. The neighborhood is a key
idea in our architecture. The mappings that define dis-
persal trees are constrained so that they embed in the
neighborhood graph. That is, if node z is a child of y
in the tree, then z is a neighbor of y in the graph. Note
that the neighborhood relation is neither symmetric nor
reflexive.

In our implementation, m = 128 and ¢ = 64. Be-
cause of the simplifying assumption in our prototype
that all subscriptions are performed offline, the map-
ping from A to P and the mapping from P to nbd(P) do
not change during execution, and hence are hard-coded
into the Intermemory daemon. We do support daemon
death and replacement so the P — N mapping (and
other mappings described below) are dynamic meta-
data. These mappings are stored in a database. Map-
ping changes are propagated throughout the system by
the database synchronization mechanism described be-
low.

In our complete design addresses are assigned as a
special case of a single general-purpose distributed ad-
ministration facility. In the prototype they are preas-
signed.

3.4 Polling Loop

Writing complex concurrent programs is difficult. Our
use of database synchronization and a neighborhood
polling loop reduces programming complexity and leads
to an implementation based on a small number of pow-
erful primitives.

A processor has 32 neighbors in IM-0. Because of the
embedding property mentioned above a processor dis-
perses fragments only to its neighbors, so the dispersal
degree is a lower bound on the neighborhood size. The
neighbors are assigned pseudorandomly, so the neigh-
borhood graph induced by the arcs from processors to
their neighbors is (with extremely high probability) an
expander. In particular, the neighborhood graph (al-
most surely) has a small diameter.

Each subscriber repeatedly executes a polling loop
contacting its neighbors one at a time to exchange infor-
mation with them. Fragment dispersal, metadata prop-
agation, and other tasks are performed during these
contacts. In addition to spreading newly added data or



metadata throughout the Intermemory, it is the polling
loop that enables the system to “fill” the local mem-
ory of a new daemon that is replacing an old one—or
to “refill” the local memory of a subscriber whose lo-
cal database has been lost due to a disk crash or other
problem.

It may not be possible to contact every neighbor
during a given execution of the polling loop. IM-0 de-
tects unresponsive processors, but takes no special ac-
tion when this occurs. The complete system design in-
cludes a “death detection” algorithm that is a special
case of the security infrastructure now under construc-
tion.

An important role of neighborhoods in the system is
to reduce the number of conversations required to per-
form this information propagation—allowing the sys-
tem to scale in principle to millions of subscribers. The
point is that small neighborhoods combined with the
embedding of dispersal trees in the neighborhood graph
allow a system to confirm through its polling loop that
it holds all needed data—and do so with a relatively
small number of network connections.

An Intermemory design objective is that the dae-
mon should use a small fraction of its host system’s
resources so that it does not significantly impact the
host’s other computing tasks. A simple amortization
strategy to achieve this objective is to introduce a de-
lay after each exchange proportional to the amount of
resources consumed. We note, however, the necessity of
ensuring that a complete cycle through the polling loop
happens rapidly enough so that the resulting rate of
system self-repair exceeds the rate at which new errors
arise. Under reasonable assumptions in today’s envi-
ronment, this is not a significant constraint. Finally we
remark that systems dedicated to Intermemory can eas-
ily dispense with this amortization to maximize system
performance.

We have found that the combination of a polling
loop, random neighborhood structure, and database
synchronization (to be described shortly) provides a
simple and effective solution to Intermemory self-
maintenance and suggest that this approach can be ef-
fective for other distributed systems as well.

3.5 The Database

An Intermemory daemon’s state consists of both
data and metadata. The state is stored locally
in a database consisting of records of the form
(key,version,data,hash). The data field is a function of
the key and integral version. The hash is a digest” of
the key, version, and data fields and is used to verify

In our prototype, data blocks are written only once so their ver-
sion is always 1. But the version mechanism is used to propagate
revised metadata information.

"The prototype uses the well-known MD35 function.

record integrity and by our database synchronization
algorithm described later.

Conceptually, the prototype includes six databases
(a complete Intermemory system will require several
more): The first two hold the system’s data, i.e., the
encoded blocks and fragments. The next one captures
the mapping from block addresses to virtual processors.
(The mapping from fragments to virtual processors is
determined algorithmically from the previous mapping
and the neighborhood mapping, and hence is not tabu-
lated. We do this to avoid the considerable space com-
plexity of explicitly storing the mapping from fragments
to virtual processors.) The next two databases contain
the mappings from a virtual processors to its network
address, and from a virtual processor to its neighbors.
The final database contains metadata replicated on only
two hosts: It records each processor’s accounting of
which fragments it will distribute (or has distributed) to
its neighbors, as well as which fragments it will receive
(or has received). In more detail, the six databases are:

1. Full Blocks: The key is the IM-address, the data
is the value of the encoded full block at that ad-
dress, providing the block has been written.

2. L1 fragments: Recall that an encoded full block
is partitioned into 32 4KB Ll-fragments. The
key is a pair (IM-address, frag_num), where 0 <=
fragnum < 32; the data is the 4KB L1-fragment.

3. VP# of Block: The key is an IM-address, the
data is the number of the virtual processor con-
taining the encoded full block with this address.

4. Network Address: The key is a virtual processor
number; the data is its network address, a pair (IP
number, port number).

5. Neighborhood: The key is a virtual processor
number; the data is its neighborhood, an ordered
list of the virtual processor numbers of its neigh-
bors.

6. L1 Dispersal: The key for this database is more
complicated; it is a quadruple (A, B, IM-address,
frag num) and indicates that virtual processor A
contains the full block with the given IM-address
and disperses the specified L1 fragment to virtual
processor B. The data is the hash of the L1 frag-
ment in question. Note that the hash is much
smaller than the fragment itself (16 bytes verses
4KB).

We regard these six conceptual databases as one
database with records of six types. This is implemented
by prepending 2-character designators for each type
to the keys described above. Hence each of the orig-
inal databases appears contiguously when the unified



database is viewed in key order. We summarize the
IM-0 database (including the two databases not actu-
ally stored in the prototype, see below) in Table 1.

3.6 Synchronization

We use database range synchronization as the main
mechanism for data and metadata propagation, in ad-
dition to system repair and administration. Input to
the range synchronization operation consists of two
databases, A and B, and a key range [, h]. The opera-
tion produces three sets of items, with each item falling
in the specified range. The first set contains all items
with keys in A but not in B, the second contains all
items with keys in B but not in A, and the third con-
tains all items with matching keys but different data or
versions.

Our pairwise synchronization algorithm functions by
both parties answering queries of the form: what is the
hash of all records in the interval [¢, h]?

The daemon’s database specification includes this in-
terval hash computation as a built-in function. Regard-
ing the database as a balanced tree our design maintains
at each node the xor of the MD5 digests of its entire sub-
tree. Because xor is associative this value may be prop-
agated naturally as part of the tree rotations performed
as records are added, deleted, and changed. It is then
possible to answer any range hash query in O(logn)
time using this enhanced tree structure. Our prototype
fully implements the database interface specification of
our design but does not yet include an implementation
of this efficient tree structure.

Each communication round of the algorithm par-
titions the range of interest into a fixed number of
subintervals and the parties compute the correspond-
ing interval hash information. Discrepancies are then
rapidly localized and dealt with by recursive applica-
tion to the mismatching subinterval. Synchronization
then requires O(tlogn) rounds, where ¢ is the combined
size of the three discrepancy sets, and n is the size of
the database range to be synchronized. Given the effi-
cient tree design above the total computational burden
is O(tlog®n).

When a processor A polls processor B, the two pro-
cessors apply database range synchronization and then
process each item in the three sets according to the item
type as we now describe. The initial range specified se-
lects the entirety of one of the logical databases by using
the two letter prefix system described above.

Given the simplifying assumptions we have made for
IM-0, we restrict our attention to those actions that
result from normal processing, from a daemon being
temporarily unavailable, and from the death and sub-
sequent replacement of a daemon at a new network ad-
dress with all its databases empty.

Full Blocks (FB) and Fragments (L1): These records
are partitioned among the processors so there is no syn-
chronization required. However synchronization of D1
items can cause changes to FB and L1 as described be-
low.

Virtual Processor Number (VP) and Neighborhood
(NB): These databases are not stored in the proto-
type, since the mappings are constant (see above).

Network Address (NA): If a record is in one daemon’s
database but not the other’s, it is simply copied over.
If both daemons have records with identical keys but
different version numbers (meaning a daemon has died
and restarted at at new network address), the record
with higher version number replaces the one with lower
version number.

Dispersals (D1): Recall that in IM-0 with its static
assignment of IM-addresses and fragments to VPs, D1
entries are never updated so all version numbers are 1.
Consider D1 record (A, B, IM-address, frag num).
Recall that this record specifies that a full block as-
signed to A has an L1 fragment assigned to B. If the
record is missing from B’s database, the full block in A
needs to be dispersed to B. A thus selects the fragment
and sends it to B along with the D1 record itself—where
they become part of B’s L1 and D1 databases.

If the D1 record is missing from A’s database, it
must have “departed” subsequent to a previous disper-
sal of this block from A to B. The likely causes are a
system crash or media failure on A. The entry in B is
now copied to A. If the full block is not present in A, a
deep read is done and the block is inserted.

To illustrate the utility of our polling and synchro-
nization approach we remark that when a daemon in
our prototype writes a full block into its database, it
also creates entries in its D1 database corresponding
to the fragments that must be dispersed. The dispersal
then happens over time in the ordinary course of polling
and synchronization.

The synchronization rules above presume that there
is only one correct data value associated with a given
key and version. In the controlled environment in which
our prototype functions this is not an issue. But it is
a central problem in the design of a complete Inter-
memory and is dealt with as part of our design for dis-
tributed and secure Intermemory administration, which
is the subject of a forthcoming pair of papers.

3.7 Space Complexity

We conclude our discussion of the prototype design by
considering the issue of space complexity in greater de-
tail.



NAME KEY DATA

type rest
Full Blocks FB IM-addr 128KB encoded block
L1 Fragments L1 (IM-addr, frag num) 4KB L1 fragment
VP# of Block VP IM-addr VP+# containing the block
Network Address | NA VP+# (IP#, port#)
Neighborhood NB VP+# VP+#s of neighbors
L1 Dispersal D1 | (A,B,IM-addr,frag num) | hash of the L1 fragment

Table 1: IM-0 Database. All entries have VERSION and HASH fields as well.

Figure 1: One frame from a real-time graphical visualization of the IM-0 Intermemory prototype running on a cluster
of workstations. A total of 104 copies of the Intermemory engine are active, corresponding to simulated subscribers.
Up to 17 may fail with all data remaining continuously available. The display provides a visualization of system
activity as it takes place. In the live system (or if this paper is viewed in color) colors indicate subscriber states
and types of communication. In the conference proceedings colors are rendered with grayscales. Circles represent
subscribers and lines represent communication events between them. Light gray (red) circles represent “dead/offline”
subscribers. The darker (blue) circles represent “living/online” subscribers. Light gray (green) lines indicate ordinary
polling-loop communications between subscribers. Dark (brown) indicates read or write operations. In this figure
the fan-like pattern of emanating from the subscriber at the lower-left, represents a deep-read. That is, a read
operation that must reconstruct a block from 16 of its 32 dispersed fragments. The residual “whiskers” attached to
some subscribers leave a record of failed or abnormal communication attempts. Once normal communication has
resumed, they disappear.



Earlier we claimed that IM-0 achieves an availability
comparable to maintaining 16 replicas while multiply-
ing the space usage by only 4. Moreover, our ultimate
design is to have 2-level dispersion with a fanout of 32,
which we have claimed gives effective redundancy of 531
at a storage cost of a 5.

These estimates include only the storage of the
blocks and fragments themselves, and as such under-
state the total space requirements of the system. Addi-
tional space is required for i) the key, version, and hash
fields of each database record, ii) unused space in the B-
tree containing the database, iii) metadata records, iv)
additional metadata record types that will be needed
for a complete implementation, v) additional fields and
records associated with the complete system’s crypto-
graphic authentication and administration infrastruc-
ture.

We have computed a close approximation to the ac-
tual space required to store 10,000 64KB records in our
prototype with 100 subscribers assuming data blocks
are uniformly distributed. The result is 2,596MB or a
little less than 4.1 times the size of the original data.
This supports our claim that the space overhead is
about the same as maintaining 3 replicas of the data.

The more interesting question is that of scalabil-
ity. The central problem arises from IM-0’s replication
of most metadata at every processor. Straightforward
analysis of our database schema reveals that in addition
to the cost of storing data blocks and their associated
fragments, there is an additional space cost of O(ND)
at each daemon where N denotes the neighborhood size
and D the number of daemons in the system. This
analysis includes the VP and NB databases that were
omitted from the prototype; the latter is the source of
the O(ND) term, which dominates all others.

Our solution is to partition the virtual processors
into color classes and to assign a color to each metadata
record by hashing its key and version fields.

Records of a given color are then only replicated at
processors of the same color.

To obtain the value of a metadata record its color
is first computed and a subscriber of that color is then
contacted. This is facilitated by maintaining an ex-
tended neighborhood color map as part of the polling
loop. Still, our current complete design includes an
O(D) space term but we view this as acceptable since
the leading constant is small.

A complete discussion of this design is beyond the
scope of the present paper, and is premature since the
detailed design of our full intermemory system is still
underway.

4 The Web Gateway

The Intermemory presents to the world an abstraction
of an array of blocks, which may be accessed by ad-
dress for reading and writing. Subject to the constraints
of network connectivity and the security model imple-
mented, any user in the world can access blocks of the
Intermemory. To complement our initial Intermemory
daemon implementation, we have implemented a sub-
routine interface that provides the array of blocks ab-
straction to programmers. The block-oriented abstrac-
tion gives Intermemory considerable platform indepen-
dence and simplifies the design of higher level interfaces,
such as distributed file systems, built on top.

Our initial exploration of Intermemory file system is-
sues has focused on the archival storage of data in fairly
large coherent pieces. It is, for example, easy to copy
a standard ISO-9660 file system image, block for block,
to a contiguous range of Intermemory block addresses.
To take advantage of this straightforward approach, we
have also implemented under Linux a preliminary mech-
anism for mounting such Intermemory-resident file sys-
tem images.

Our implementation uses the NBD (Network Block
Device) driver in the Linux 2.2 kernel. The NBD de-
vice driver implements a UNIX block device, suitable
for mounting a file system, by translating all read /write
requests into messages to a user-level server via a TCP
stream. We wrote such a server to translate NBD
requests into Intermemory requests. Since the initial
Intermemory prototype has write-once semantics, and
there is a block size mismatch between the kernel and
the Intermemory, our current server completely avoids
the complexity of handling writes. Instead, we use a
simple utility to copy a filesystem image directly to In-
termemory, without going through the NBD driver or
server. Subsequently, we specify read-only access when
mounting Intermemory file systems.

Mounting is performed automatically by using the
Linux autofs facility. Let <addr> denote the hex-
adecimal Intermemory address of the first block of
a file system whose image is stored in Intermemory.
Users refer to files by specifying a path of the form
/im/<addr>/path.... We configure autofs so that ref-
erences to anything under the /im/<addr> directory
trigger a mount of the corresponding filesystem. Mount-
ing and unmounting happen transparently to the user,
who may be running an HTTP web server or any other
ordinary UNIX program. We have used this procedure
to provide Web browser access to portions of the Inter-
memory.



5 Visualizing Prototype Activity

Even at the scale of our IM-0 prototype, it is difficult
to monitor the behavior of a distributed system such
as Intermemory. For this reason the prototype includes
a special logging facility that reports many events to a
central monitoring station.

The resulting log file can then be converted to a se-
quence of graphical display instructions coded in the
PostScript language. We use the ghostscript inter-
preter to provide real-time visualization of system ac-
tivity. An example as shown in Figure 1.

The resulting monitoring and visualization facilities
were an essential part of our implementation process
and we plan to improve both facilities in our future
work.

6 Concluding Remarks

Our continuing studies of Intermemory have strength-
ened our belief that a system of this nature will be in-
creasingly important as ever more information becomes
available world-wide. The success of the IM-0 prototype
convinces us that Intermemory is feasible for archival
write once applications. We expect that far more gen-
eral Intermemories are possible and are actively pursu-
ing this direction and considering the important issue
of archival semantics, while completing the design and
algorithms for a general distributed security and ad-
ministrative infrastructure. To address the important
problem of archival semantics we plan to extend the
scope of Intermemory to include a succinctly specified
virtual machine and environment, aimed at providing a
long-lived emulation-based solution.
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