

Peter N.Yianilos
(guest editor)
Intermemory.net

Sumeet Sobti
Intermemory.net

The Evolving Field of
Distributed Storage
Memory is a fundamental com-

modity of computation. Storage
systems provide memory that

costs far less than RAM and has greater
persistence, but suffers from much lower
data transfer bandwidths and higher
access latencies. These attributes — cost,
persistence, bandwidth, and latency — are
the traditional evaluation metrics for stor-
age systems, but the remarkable growth
of communications and networking over
the past few decades has complicated this
simple picture.

Today the network is an integral part
of the computer. Most of us routinely
access Web pages whose display requires
fetching data from dozens of machines
around the world. The Web is the first dis-
tributed storage system to have such an
immediate global impact. It illustrates the
technological, economic, and cultural
power of a distributed approach. Howev-
er, the Web’s fragility and operational
semantics prevent it from addressing the
storage problems of mainstream data pro-
cessing. For example, error messages
or suspended display is common when
a network or system component fails

somewhere, making a page or one of its
elements inaccessible. Also, informal
caching on the Web makes it hard to be
certain that you’re viewing current infor-
mation.

A simple form of distributed file stor-
age is widespread now, as many of us rou-
tinely and transparently access files stored
somewhere else on a local area network.
Between LANs and the World Wide Web
lies the domain of distributed enterprise-
wide storage, an area that industry is now
actively developing.

In this increasingly complex and de-
manding world of distributed storage, we
are forced to consider new metrics and
issues beyond the traditional set. These
include shared coherent access, availabil-
ity, survivability, security, interoperabili-
ty, search, caching, load balancing, and
scale — the need for storage systems
of truly immense proportions. Indeed, our
increased appetite for storage has also
engendered another design issue: the
need to largely automate the now
human-intensive task of managing large
storage systems. Finally, an undercurrent
in the flow of ideas concerns the cultural

IEEE INTERNET COMPUTING 1089-7801/01/$10.00 © 2001 IEEE http://computer.org/internet/ SEPTEMBER • OCTOBER 2001 35

In
tr

od
uc

ti
on

 a
nd

 S
um

m
ar

y

issues of privacy and anonymity in the context of
distributed storage.

The builders of distributed storage systems face
many architectural decisions as they work toward
their targets among these metrics and issues. The
most basic of these is the question, “Who’s doing
the work of providing storage services?”

Hierarchical approaches, including the new trend
toward storage virtualization, use layers of control
and abstraction to stitch together distributed and
disparate storage providers into a single virtual
whole. In the peer-to-peer approach, the clients
themselves provide storage for everyone. There is
no need for any server in the traditional sense. In

the ideal case, such
systems are fully
symmetrical with
no fixed central
leader. The server-
to-server approach
is related to peer-
to-peer, but here
many servers work
together in a sym-
metrical way to
provide storage ser-
vices; clients need

not install any new software to consume basic stor-
age services. This broad categorization includes
much work in the established field of distributed file
systems.

In This Issue
This special issue presents three articles that
address different approaches to and aspects of dis-
tributed storage.

The first article, “Maintenance-Free Global
Data Storage” by Rhea et al., describes a proposed
global-scale persistent data storage system,
OceanStore, which targets high availability and
survivability of data and performance in the pres-
ence of faults, attacks, and changing network
conditions and server membership. The enormous
scale contemplated within OceanStore mandates
mechanisms for automatic system maintenance.
The article discusses these mechanisms in the
context of four pieces of the system: (1) an
object-location and message-routing infrastruc-
ture called Tapestry, (2) a subsystem that dispers-
es erasure-coded fragments of each data object to
a diverse set of servers, (3) a subsystem that runs
a Byzantine agreement protocol to serialize and
authenticate updates to data objects, and (4) a set
of algorithms that observe the behavior and

usage of the system, and adapt the system to
optimize performance.

The second article, “Managing Data Storage in
the Network” by Plank et al. presents a program-
ming abstraction called the Internet Backplane Pro-
tocol (IBP) for distributed and network applications.
This protocol allows applications to control inter-
mediate data-staging operations explicitly as data
is communicated between processes. Applications
that are aware of storage server locations in the net-
work can use IBP to exploit locality and manage
server resources effectively. The article illustrates
some sample applications that can benefit from IBP.
By design, the protocol is very simple to understand
and use. It is being developed and deployed as part
of the Internet-2 Distributed Storage Initiative.1

The IBP approach can be compared to the
approach taken in OceanStore, where applications
are entirely unaware of server locations and the
system attempts to optimize the use of storage and
network resources internally.

In the final article, “Managing Scientific Meta-
data,” Jones et al. describe Metacat, a tool for col-
lecting, managing, and querying heterogeneous
metadata that is distributed across multiple sites,
each possibly under the control of a different
administration. The data syntax and semantics at
each site are described using the Extensible Markup
Language (XML). Metacat collects and stores these
metadata documents in an SQL-compliant rela-
tional database management system. Metacat also
allows replication of these metadata documents on
multiple Metacat servers while maintaining con-
sistency and allowing sites to retain local control
over their own data and metadata.

A Broader View
To give a broader view of the scope of work in the
distributed storage field, we offer a brief survey of
several recent projects, including references for read-
ers who want more detail. For earlier work on dis-
tributed file systems for LAN environments, see Levy
and Silberschatz,2 Anderson et al.,3 and Thekkath,
Mann, and Lee,4 and the references therein.

Replication-Based Data Archives
Past, Intermemory, and Farsite are distributed data
storage services that target high availability, sur-
vivability, performance, and scalability. Each of
these services distributes data replicas or erasure-
resilient fragments5 to a diverse set of nodes to
ensure availability and long-term data survivabil-
ity. Sophisticated data structures and algorithms
keep track of the replicas and fragments. These

36 SEPTEMBER • OCTOBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Data Storage

The enormous scale

contemplated within

OceanStore mandates

mechanisms for automatic

system maintenance.

systems share many goals with the OceanStore
and Internet-2 DSI projects.

For specialized efforts toward replication-based
archival storage systems in the context of digital
libraries, see Crespo and Garcia-Molina.6

Past. This global utility, in development at
Microsoft Research, Cambridge, UK, names files
with random-looking bit strings that are crypto-
graphically tied to their content and are, therefore,
immutable.7 Replicas of files are placed on a
diverse set of nodes by a fault-tolerant and self-
organizing routing and location infrastructure
called Pastry.8 The set of nodes storing replicas of
a file is determined pseudorandomly, which pro-
vides load-balancing guarantees and resilience
against faults and attacks. When the overall stor-
age utilization in the system is high and the bal-
ancing of data achieved by randomization is not
enough, Past takes additional measures, called
replica diversion and file diversion, to achieve
more fine-grained load balancing.

The Past system uses smart cards to ensure sys-
tem integrity. A third-party broker issues smart
cards to each system node and user. The smart card
contains a unique (pseudorandomly generated) ID,
a unique private/public key pair, and the broker’s
public key; the broker signs the ID and the public
key. The smart card generates and verifies various
certificates during insert-file and reclaim-space
operations. Each user’s smart card also maintains
the usage quota for the user. The use of smart cards
is also a mechanism for giving users necessary cre-
dentials anonymously, as smart cards with fixed
usage quotas can be sold in retail stores.

Intermemory. The Intermemory project addresses
the issue of long-term preservation of information
in the context of digital libraries.9,10 The system
can be envisioned as either peer-to-peer (a public
intermemory) or server-to-server where libraries
and institutions cooperate to create a robust stor-
age substrate for their collective holdings.

Unlike other projects with similar availability
and survivability goals, this work implements a
distributed block-store substrate on which arbitrary
data structures, including conventional file sys-
tems, can be built. It features two-level dispersal of
erasure-resilient fragments with 1,024 nodes ulti-
mately participating in the storage of each block.
The system uses database synchronization between
random pairs of Intermemory nodes to propagate
metadata and data fragments efficiently and to
provide an automated self-repair mechanism.

Many ideas from the original Intermemory pro-
ject are now contributing to the Intermemory.net
commercial project.

Farsite.Farsite is a replication-based distributed file
system where clients contribute storage resources in
exchange for a highly available and reliable file sys-
tem service.11 Logically, a single hierarchical file sys-
tem is visible from all access points, but underneath
files are replicated and distributed among the client
machines. There is no central authority that admin-
isters the system. The system does not assume mutu-
al trust among the client machines. Write access
to files is controlled using digital signatures. All files
are encrypted before storage
using a technique called
convergent encryption,
which allows files with
identical content to be
detected even if they have
different names and are
encrypted using different
keys. Files with identical
content are coalesced to
save space. Also to save
space, files are compressed
at write time, and decom-
pressed when read. A distributed directory dynami-
cally keeps track of replica and file version locations.

File-Sharing and Publishing Systems
Napster, Gnutella, Mojo Nation, and Freenet are
peer-to-peer file-sharing systems in which many
nodes contribute storage and network resources to
build a highly available pool of files. Decisions
about which files to keep and evict over time are
made locally by each individual node. As a result,
these systems do not guarantee long-term surviv-
ability of files — especially those files that few
users are interested in storing or accessing.

Freenet is one of several projects that have tar-
geted anonymity of publication and resistance to
censorship among their objectives. Publius and
Free Haven are two others, summarized here. In
addition, a seminal paper by Ross J. Anderson,
“The Eternity Service,”12 proposed a storage medi-
um with properties similar to the Internet in order
to resist denial-of-service attacks aimed at
censorship. Two Web sites — http://www. cypher-
space.org/~adam/eternity/ and http://www.kolej.
mff.cuni.cz/~eternity/ — offer information on
sample implementations of Anderson’s ideas. A
recent book edited by Andy Oram provides more
information on many of these projects.13

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2001 37

Introduction and Survey

Peer-to-peer

file-sharing systems

do not guarantee

long-term

survivability of files.

Finally, the Xanadu Web site (http://www.
xanadu.com) documents a long-running effort
concerned with improving distributed publishing
and referencing, and related intellectual property
and copyright issues.

Napster. Napster (http://www.napster.com) is an
MP3 file-sharing system. Users contribute storage
and network resources, and their holdings are
available only if they are operational. Files are
searched via keywords that are matched with
metadata associated with each file. Indexing and
searching of files is centralized at the Napster site.
Napster brokers client connections, but data trans-
fer happens directly between clients.

Gnutella. Gnutella (http://gnutella.wego.com) is a
decentralized protocol built on a self-adapting
overlay infrastructure. Here files are not searched

by names. Instead, each query
is broadcast to a set of nodes
in its raw form, and each
receiving node is free to inter-
pret it as it likes. For example,
a node can try to match the
query with file names or file
contents, or it can process the
query in any other manner.
Queries and other requests are
broadcast by a multihop flood

algorithm that prevents loops. The result is a very
high probability of finding popular files. Data
transfer takes place directly between two parties.

Mojo Nation. This system (http://www.mojonation.
net) splits files into multiple fragments using era-
sure-resilient codes and then disperses the frag-
ments to different users’ machines. The goal is not
long-term durability of data, but increased band-
width and load balancing. When accessing a file,
fragments are downloaded from multiple peers in
parallel, and the file is reconstructed. This allows
even users with limited bandwidth to contribute
resources to the system. This technology is called
swarm distribution.

Another novel aspect of Mojo Nation is an
accounting scheme that provides incentive for users
to contribute resources to the system. Each peer-to-
peer interaction in the system costs some credits,
which are counted in terms of a digital currency
called a mojo. Mojos are earned by contributing
storage, network, and CPU resources to the system.
The bookkeeping and the transactions are carried
out with the help of a trusted third party. The

accounting scheme also contributes toward achiev-
ing fine-grained load balancing. For example, if a
server is heavily loaded, then the system gives rich
users a higher priority, thus encouraging other users
to migrate to less heavily loaded servers.

Freenet. Freenet features absolutely no central-
ization.14 Files are identified with unique code
names (random-looking bit strings), and are
searched using these names. Freenet’s goals
include resistance to censorship, anonymity for
users, and plausible deniability for node operators.
Requests and replies are forwarded through chains
of nodes. Forwarded files are cached throughout
the chain. Documents are encrypted, and the keys
are not known to the node operators. This gives
operators some degree of deniability over the con-
tent they host.

Publius. This publishing system consists of a fixed
static set of servers that host encrypted content.15

The author of a document creates a secret key to
encrypt the document. The secret key is split into n
shares such that k of the shares are sufficient to
retrieve the key, while less than k shares does not
reveal any information. Servers are pseudoran-
domly chosen to store copies of the encrypted doc-
ument and one key-share each.

The author-to-server communication is per-
formed through an anonymous channel like Onion
routing16 or Freedom (http://www.freedom.net). A
URL is generated that deterministically maps to a
set of (at least k) servers that contain the encrypt-
ed document and the key-shares. Documents are
accessed using a standard Web browser and a local
Web proxy that fetches the shares and a copy of
the encrypted document, reconstructs the key, and
then decrypts the document using the key. The
Publius system also provides mechanisms to
update and delete the documents, but only the
original author can perform these operations.

Free Haven. This system, developed by students
at MIT and Harvard, targets anonymity, censor-
ship resistance, and guaranteed availability of
each document for a publisher-specified life-
time.17 It includes a novel reputation system for
servers and a file-trading mechanism. The sys-
tem sacrifices efficiency and some convenience
to achieve the goals of persistence, anonymity,
and server accountability. This contrasts with
systems like Freenet, which target anonymity
and efficiency but do not guarantee long-term
survivability.

38 SEPTEMBER • OCTOBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Data Storage

. . . a de facto

economic and

cultural mandate to

store and archive.

Conclusion
The ongoing evolution of storage and network tech-
nologies has supported the rapid growth in the field
of distributed storage over the past few years, but a
widely felt demand for more and better storage is a
significant driving force behind this growth. The
demand arises from an apparent de facto econom-
ic and cultural mandate to store and archive as
many bits as possible. This trend will pose interest-
ing new challenges as storage systems are asked to
store not just bits, but also the their semantics. For
what use is an image that can’t be seen because its
format is forgotten or a program that can no longer
be executed because the machine that ran it no
longer exists?

Acknowledgments
We thank Joe Kilian and Dina Kravets for help in preparing this

article.

References

1. M. Beck and T. Moore, “The Internet2 Distributed Storage

Infrastructure Project: An Architecture for Internet Con-

tent Channels,” Computer Networks and ISDN Systems,

vol. 30, no. 22-23, 1998, pp. 2141-2148.

2. E. Levy and A. Silberschatz, “Distributed File Systems:

Concepts and Examples,” ACM Computing Surveys, vol.

22, no. 4, Dec. 1990, pp. 321-374.

3. T. Anderson et al., “Serverless Network File Systems,” Proc.

15th Symp. Operating System Principles, ACM Press, New

York, 1995, pp. 109-126.

4. C. Thekkath, T. Mann, and E. Lee, “Frangipani: A Scalable

Distributed File System,” Proc. 16th ACM Symp. Operat-

ing System Principles, ACM Press, New York, 1997, pp.

224-237.

5. M.O. Rabin, “Efficient Dispersal of Information for Securi-

ty, Load Balancing, and Fault Tolerance,” J. ACM, vol. 36,

no. 2, 1989, pp. 335-348.

6. A. Crespo and H. Garcia-Molina, “Archival Storage for Dig-

ital Libraries,” Proc. Third ACM Int’l Conf. Digital Libraries,

ACM Press, New York, 1998, pp. 69-78.

7. A. Rowstron and P. Druschel, “Storage Management and

Caching in Past, a Large-Scale, Persistent, Peer-to-Peer

Storage Utility,” to be published in Proc. 18th Symp. Oper-

ating Systems Principles, 2001.

8. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed

Object Location and Routing for Large-Scale Peer-to-Peer

Systems,” submitted for publication, May 2001.

9. A.V. Goldberg and P.N. Yianilos, “Towards an Archival Inter-

memory,” Proc. IEEE Int’l Forum on Research and Technol-

ogy Advances in Digital Libraries (ADL 98), IEEE Computer

Soc. Press, Los Alamitos, Calif., 1998, pp. 147-156.

10. Y. Chen et al., “A Prototype Implementation of Archival

Intermemory,” Proc. Fourth ACM Conf. Digital Libraries

(DL 99), ACM Press, New York, 1999.

11. W.J. Bolosky et al., “Feasibility of a Serverless Distributed

File System Deployed on an Existing Set of Desktop PCs,”

Proc. Int’l Conf. Measurement and Modeling of Computer

Systems (SIGMetrics 2000), ACM Press, New York, 2000,

pp. 34-43.

12. R.J. Anderson, “The Eternity Service,” Proc. First Int’l Conf.

Theory and Application of Cryptography (PRAGOCRYPT

96), CTU Publishing House, Prague, 1996; available online

at http://www.cl.cam.ac.uk/users/rja14/eternity.html.

13. A. Oram, ed., Peer-To-Peer: Harnessing the Power of Dis-

ruptive Technologies, O’Reilly & Assoc., 2001.

14. I. Clarke et al., “Freenet: A Distributed Anonymous Infor-

mation Storage and Retrieval System,” Proc. ICSI Work-

shop on Design Issues in Anonymity and Unobservability,

Int’l Computer Science Inst., 2000.

15. M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: A

Robust, Tamper-Evident, Censorship-Resistant Web Pub-

lishing System,” Proc. Ninth Usenix Security Symp., Usenix

Assoc., Berkeley, Calif., 2000, pp. 59-72.

16. D. Goldschlag, M. Reed, and P. Syverson, “Onion Routing

for Anonymous and Private Internet Connections,” Comm.

ACM, vol. 42, no. 2, Feb. 1999, pp. 39-41.

17. R. Dingledine, M.J. Freedman, and D. Molnar, “The Free

Haven Project: Distributed Anonymous Storage Service,”

Proc. Workshop on Design Issues in Anonymity and Unob-

servability, 2000.

Peter N. Yianilos leads a technology incubator, Yianilos Labo-

ratories, in Princeton, New Jersey, where he is also chair

of Netrics.com, chief technology and architecture advisor

to Franklin Electronic Publishers, and president of the

recently formed company, Intermemory.net. His research

interests include algorithms, systems, intelligence, and

electronic publication. In October 2000, he received the

first annual Frankfurt eBook award for technology. Yiano-

los received bachelor’s and master’s degrees in mathemat-

ics and computer science from Emory University, and a

PhD in computer science from Princeton University.

Sumeet Sobti is a graduate student in computer science at

Princeton University. His research interests include file

and storage systems, operating systems, and the theory of

exact and approximation algorithms. Sobti earned a bach-

elor’s degree from the Indian Institute of Technology, Kan-

pur, and a master’s degree from the University of Wash-

ington, Seattle.

Readers may contact the authors via e-mail at pny@

pnylab.com and sobti@cs.princeton.edu.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2001 39

Introduction and Survey

