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Abstract

Motivated by the goal of establishing stochastic and information theoretic foundations
for the study of intelligence and synthesis of intelligent machines, this thesis probes
several topics relating to hidden state stochastic models.

Finite Growth Models (FGM) are introduced. These are nonnegative functionals
that arise from parametrically-weighted directed acyclic graphs and a tuple observa-
tion that affects these weights. Using FGMs the parameters of a highly general form
of stochastic transducer can be learned from examples, and the particular case of
stochastic string edit distance is developed. Experiments are described that illustrate
the application of learned string edit distance to the problem of recognizing a spoken
word given a phonetic transcription of the acoustic signal. With FGMs one may direct
learning by criteria beyond simple maximum-likelihood. The MAP (maximum a pos-
teriori estimate) and MDL (minimum description length) are discussed along with the
application to causal-context probability models and unnormalized noncausal models.
The FGM framework, algorithms, and data structures describe hidden Markov mod-
els, stochastic context free grammars, and many other conventional similar models
while providing a unified and natural way for computer scientists to learn and reason
about them and their many variations. A software system and scripting language is
proposed to serve as an assembly language or sorts for many higher level model types.

This thesis also illuminates certain fundamental aspects of the nature of normal
(Gaussian) mixtures and the reparameterization of related optimization problems.
The use of conditional normal mixtures is proposed as a tool for image modeling, and

issues relating to the estimation of their parameters are discussed.
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Chapter 1
Introduction

Determining the computational nature of animate intelligence is perhaps the greatest
single challenge facing the field of computer science. Many approaches are possible,
and will no doubt be necessary if this riddle is to be solved. These range from the
study of biological nervous systems, to analysis of the tasks that creatures perform
— and frequently include a constructive component in which a machine is built or
programmed to exhibit behavior that is in some sense intelligent. Here a distinction
emerges. When the focus is entirely on successful performance of a particular task, one
is led to consider designs that in all likelihood shed little light on the central question
above. In its pure form this pursuit is then the study of artificial intelligence. That
is, machines and software engaged in a masquerade — resembling in some respects
the object of their emulation, but made of essentially different stuff. By contrast the
study of synthetic intelligence strives towards constructions that while man-made, are
nevertheless intelligent in the natural and animate sense. Of course in practice the
distinction between synthetic and artificial is often hard to make, and really represents
a difference in research direction and motivation. Moreover, while we may seem to
attach a pejorative connotation to “artificial” in the discussion above, it certainly may
be that machines will emerge from this work that are unquestionably intelligent in a
deeply different sense from that with which we are today familiar. Nevertheless, our

main interests lie along the synthetic direction.
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Natural intelligence is impressively robust in the presence of noise and uncertainty.
One view is that such factors should be dealt with by an outer wrapper of techniques,
exposing an inherently discrete and symbolic problem at the core. Indeed there is a
long history of investigators focusing on problems such as theorem proving and logical
reasoning, while avoiding the less easily framed problem of robustness. Our view is
that the manner in which nature deals with this more elusive problem may represent
the central idea behind intelligence, not just a front-end noise filter.

Stochastic modeling techniques represent a formal approach to the problems of
noise and uncertainty — and have been somewhat successful when applied to difficult
problems such as speech recognition and other signal and image processing tasks.

Chapter 2 introduces the Finite Growth Model (FGM) framework which spans
many existing model classes and opens up important new possibilities. Among these
is the notion of stochastic transduction in which a machine converts one observation
into another. The probability of transduction between two objects can be thought
of as an indication of their similarity. A characteristic of natural intelligence is its
use of nontrivial metrics, i.e. notions for similarity. Another striking feature is that
these metrics are sometimes learned. Both of these are possible within the stochastic
transduction paradigm. We remark that the well-known concept of string edit dis-
tance may be viewed as a single state memoryless transducer, and our work provides
a convenient way to optimize its cost parameters. Speech recognition may be viewed
as a grand transduction from signal to text. Chapter 3 describes experiments that
represent a first step towards approaching the problem using this formalism. Finite
growth models also include the class of hidden Markov models and stochastic context
free grammars which can provide a means to discover hidden structure in a a set of ob-
servations. This corresponds to another salient characteristic of natural intelligence.
FGMs also allow the model designer to cope with the learning-theoretic considera-
tions of overtraining and generalization by building data-appropriate models resulting
from optimization criteria such as that of minimum description length (MDL) or the
maximum a posteriori probability estimate (MAP).

While interesting and perhaps practical, the stochastic modeling techniques we
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introduce would seem to be more artificial than synthetic — since a common language
for this field is that of linear algebra, an unlikely component of our biological endow-
ment. Beyond this observation, it seems unlikely that nature would confine herself to
the use of strict probabalistic models.

An important contribution of chapter 2 is the presentation of FGMs, and by in-
clusion many specific stochastic model classes, in terms of weighted graphs and a
related optimization problem. These constructions need not represent causal probab-
ility models — or probabilities at all. Nevertheless the celebrated Baum-Welch and EM
algorithms are shown to still apply, and we argue that their essential message is one
of decomposition. That is, breaking up a particular graph-based global optimization
problem into a set of local problems such that progress on the local problems will
necessarily advance the global objective. These observations paint FGMs in a far
more connectionist light and it is for this reason that we see it as at least plausible
that nature might employ related principles.

Chapter 4 sketches the design of a software library and language for FGMs. Ex-
perimentation in expedited by effective tools, and we argue that our design should be
viewed as an assembly language for computational hidden-state stochastic modeling.

The material of chapters 5 and 6 is of a more esoteric and perhaps artificial nature.
Chapter 5 exposes a fascinating and somewhat counterintuitive degeneracy in the
relationship between the prior and a posteriori distributions arising from a mixture
of normal densities. This degeneracy is then exploited to prove a reparameterization
theorem that provides a modicum of theoretical justification to learning approaches
that proceed by reweighting the input pattern set. In chapter 6 we discuss approaches
to the learning of continuous context models.

We submit that a stochastic and information-theoretic paradigm for intelligence
is emerging; although it is not clear whether the insights it generates pertain to the

synthetic or only to the artificial face of the problem.



Chapter 2

Finite Growth Models

Finite growth models (FGM) are nonnegative functionals that arise from parametrically-
weighted directed acyclic graphs and a tuple observation that affects these weights.
The weight of a source-sink path is the product of the weights along it. The functional’s
value is the sum of the weights of all such paths. The mathematical foundations of
hidden Markov modeling (HMM) and expectation maximization (EM) are generalized
to address the problem of functional maximization given an observation. Probability
models such as HMMs and stochastic context free grammars are examples that satisfy
a particular constraint: that of summing or integrating to one. The FGM framework,
algorithms, and data structures describe these and other similar stochastic models
while providing a unified and natural way for computer scientists to learn and reason
about them and their many variations.

Restricted to probabilistic form, FGMs correspond to stochastic automata that
allow observations to be processed in many orderings and groupings — not just one-
by-one in sequential order. As a result the parameters of a highly general form of
stochastic transducer can be learned from examples, and the particular case of string

edit distance is developed.



CHAPTER 2. FINITE GROWTH MODELS 3

In the FGM framework one may direct learning by criteria beyond simple maximum-
likelihood. The MAP (maximum a posteriori probability estimate) and MDL (min-
imum description length) are discussed along with the application of FGMs to causal-

context probability models and unnormalized noncausal models.

2.1 Introduction

Hidden discrete-state stochastic approaches such as hidden Markov models (HMM) for
time series analysis, stochastic context free grammars (SCFG) for natural language,
and statistical mixture densities are used in many areas including speech and signal
processing, pattern recognition, computational linguistics, and more recently compu-
tational biology. These are parametric models and are typically optimized using the
Baum-Welch, inside-outside, and expectation maximization (EM) algorithms respect-
ively. They share a common mathematical foundation and are shown to be instances
of a single more general abstract recursive optimization paradigm which we refer to as
the finite growth model framework (FGM) involving non-negative bounded functionals
associated with finite directed acyclic graphs (DAG). These functionals need not be
probabilities and an FGM need not correspond to a stochastic process.

With FGMs interesting new kinds of stochastic models may be designed, existing
models may be improved, settings that are not strictly probabalistic in nature may be
addressed, and it becomes easier to design and reason about a wide range of problems.

This chapter! introduces and develops the FGM framework and then applies it to:

1. the definition of k-way stochastic transducers whose parameters may be conveni-

ently optimized based on training data;

2. the special case of 2-way string transduction which is shown to correspond closely
with the notion of string edit distance where parameter optimization corresponds
to learning insert, delete, and substitute costs that best explain a training corpus

of similar strings;

!This chapter first appeared as a technical report [RY96a].
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3. the inclusion of model complexity tensions such as minimum description length
(MDL) and mazimum a posteriori probability (MAP) estimation within models
such as HMMs while retaining the ability to easily optimize them;

4. show that context dependent observation functions may be used to extend the
power of conventional stochastic models while preserving the convenience of

parameter reestimation;

5. consider problems that are not strictly probabilistic in nature such as parameter
estimation for unnormalized noncausal image models and investment portfolio

optimization; and

6. provide a unified framework for understanding existing models such as SCFGs
and HMMs along with their many variations by giving time and space efficient

reductions to FGMs.

Graphical models [Pea88, SHJ96] represent a branch of related work in which the
independence structure of a set of random variables is the main focus. One can express
such models using FGMs — as well as considerably more general settings such as that
in which no two variables are independent (their graphical model is fully connected),
but they are jointly constrained in interesting ways.

An FGM is a directed acyclic graph with a single source and sink together with
a collection of non-negative bounded weight functions {w;} that are associated with
edges — one per edge. The value of a source-sink path is the product of the weights
along it and the FGM’s value is the sum over all such paths of their values. Section
2.2 presents a formal development but we will sketch the basic ideas here.

The weight function w;(z.|V;) associated with edge e accepts an argument z. and
parameters ;. The objective of FGM optimization is to maximize the FGM’s value
over its parameters {W;} which are assumed to be independent. The argument z, is
regarded as fixed. The same weight function may be associated with several edges
but will in general assume different values since z, is a function of the edge to which

it is attached.
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If each edge has a distinct associated weight function then optimization is im-
mediately reduced to the task of independently maximizing the weight functions in
isolation. The interesting situation arises when this is not the case. Here a change
to a single parameter set W may affect weights throughout the DAG. The values of
many source-sink paths may be affected and an interaction between members of {W}
arises, i.e. simple independent maximization is no longer possible.

Surprisingly it is still possible to decompose the optimization problem into certain
independent subproblems. This is the key mathematical message of Baum-Welch and
EM generalized to the FGM framework. However, even exact solution of the subprob-
lems does not yield a maximum for the FGM. But a new combined parameter set
does result that strictly improves it — unless one has already converged to a limiting
value. Iteration is then used to ¢limb to such a limiting value. Unlike gradient descent
with line search this approach confidently moves to a sequence of increasingly better
points in parameter space and in many cases reduces to a strikingly simple and in-
tuitive algorithm. The cost functions may themselves be FGMs and the computation
of an improved parameter set simply depends upon the ability to solve the primitive
maximization problems at the bottom of the recursive hierarchy.?

The mathematical idea behind this decomposition begins with a simple equality
having to do with the log of a sum of terms. Let S = T} 4+ ... + T, and define
proportions P; = T;/S. Notice S = T;/P;. For any nonnegative vector R with unity

suim:

logS = ZRi log 5 (1)
= ZRZ' log T;/ P; (2)
= ZRilogTi—ZRilogB (3)

2We must remark that it is important to realize that convergence to a limiting value for the FGM
is not the same as convergence of its parameters.
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Observe that the second term is maximized when P = R since both are stochastic
vectors.

In our setting each term 7T} corresponds to a source-sink path, and its value is not
constant, but rather is a function of some parameter set W’. Optimizing the FGM is
then the problem of maximizing their sum over W’. This is the same as optimizing
their log sum; connecting the equality above to the problem of FGM optimization.

Accordingly we parameterize the equality by writing S(V') = Ty (V) +. ..+ T, (V)
and P(W') = T;(¥")/S(¥') where our objective is to maximize S over W'. The search
for a maximum takes place iteratively. During each iteration we denote the current
parameters by ¥ and vary U’ looking for an improved set.

To express this iterative approach the equality is specialized by defining R to be
P evaluated at the current parameters ¥, i.e. B = P(¥). Then:

log S(W ZP ) log Ti(W ZP ) log P:(0")

The right term may be ignored because any departure from ¥ will decrease it whereby
log S and therefore S are increased. We then focus on maximizing the left term which
corresponds to the @) function of the HMM/EM literature.

Elements of the remaining summation correspond to source-sink paths through
the FGM’s DAG and the proportions P;(V) are the relative contribution of each path
to the FGM’s value. Each term T;(¥') is then a product of of weight functions and
breaks up into a sum of individual log terms. The proportions are then distributed
over them and the final step is to group terms by weight function. The problem is
then decomposed as required into independent subproblems each involving a single
weight function.

The argument above is made in much greater detail in section 2.2 and the formal
definition of an FGM presented there is more involved in two respects. First, there are
two weight functions, not one, associated with each edge. These are abstractions of
the normally separate transition and observation generation functions of a stochastic
automaton. Second, the z, in our discussion above is defined to be some function of

an observation tuple . A simple such function is that of coordinate projection where,
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for example, the function’s value might be that of a single dimension of z.

The contribution of section 2.2 is the development of a framework that has nothing
directly to do with stochastic models or probability in which the essential ideas of
Baum-Welch and EM nevertheless apply. Our view is that the essential content of these
ideas is one of decomposability of certain optimization problems that are captured in
a somewhat general way by our definition of an FGM.

The early literature, especially theorem 2.1 of [BPSW70], reveals an awareness
that the mathematics of HMMs apply beyond strictly probabalistic settings. This
direction of generalization does not however appear to have been followed until now.
Thinking seems to have been dominated by the motivating problem: the optimization
of Markovian stochastic models. Because of the limited computational capabilities
of the time and their highly mathematical viewpoint a great deal of emphasis was
also placed on the primitive weight functions for which exact maximization may be
performed in closed form, and those which give rise to unique global maxima. By
contrast we devote very little attention to the the specific characteristics of these
primitive functions and view them instead as an abstract types that by assumption
support a set of required operations.

In section 2.3 the FGM framework is specialized to the case of probabilistic models.
The z; above result from projections that select one or more coordinate dimensions
such that along each source-sink path each dimension is selected exactly once. Also,
the weight functions are restricted to be probability functions or densities. It is not
important that the dimensions occur in any fixed order as one follows alternative
source-sink routes; nor is it required that the dimensions be selected one at a time.
The contribution of this outlook is that FGM-based stochastic models can generate
observations in many orderings and groupings — not just one-by-one in sequential order
as in HMMs — a capability exploited later in our discussion of stochastic transducers.

Section 2.4 begins by considering the case of infinite stochastic processes. Viewed
generatively these models produce output of unbounded size but are used in practice
to evaluate the probability of finite observations and are trained using a finite set of

finite observations. Restricted in this way they correspond to FGMs that capture
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their truncated form. Moreover the conventional evaluation and learning algorithms
associated with them arise naturally from this viewpoint.

Baum-Welch and EM are today generally regarded as mazimum-likelihood para-
meter estimation techniques. A more modern learning theoretic perspective recognizes
the important tension between model complexity and available training data. An im-
portant contribution of section 2.4 is the description of a construction that modifies
the FGM associated with a stochastic model so that alternative criteria such as MDL
or MAP can guide optimization. The optimization is still based on Baum-Welch/EM
so we suggest that these should not be viewed as statistical ML techniques and that
their broader utility is revealed by our more general functional optimization perspect-
ive. The applicability of EM to MAP was first described in [DLR77]. Nevertheless,
the parameters of models such as HMMs are still estimated in the ML sense.

The observation functions associated with each state in a conventional Hidden
Markov model must satisfy an independence assumption: that their state depend-
ency is limited to the current state (the Markov condition). Section 2.4 observes that
conditioning on earlier portions of the observation sequence does not violate this as-
sumption and demonstrates that using the FGM framework, it is easy to see that
parameter reestimation for such context dependent HMMs decomposes into primitive
context optimization problems. This generalizes Brown’s use [Bro87] of the previ-
ous speech window to condition generation of the current one. Thus the power of
causal context models such as statistical language models may be added to the HMM
framework and may lead to improved performance.

The section also presents another illustration that the reach of FGMs extends in a
useful way beyond conventional and strictly stochastic models. Causal context mod-
els express the probability of an observation as a product of conditional probabilities
such that each dimension is predicted once and does appear earlier as a conditioning
variable. These restrictions are constrictive in settings such as image modeling where
modeling each pixel based on its surrounding context seems natural. Simply relaxing
the requirements that probabalistic modeling places on an FGM’s source-sink projec-

tion functions proves that FGM optimization will improve even noncausal models like
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the image example above.

Stochastic models describe the manner in which an object is generated. This object
is conventionally imagined to be something like an image, an audio recording, or a
string of symbols. If instead one models pairs of such objects the focus shifts from
describing the nature of an individual to uncovering the relationship between them.
The pairs may be thought of as instances of the are similar concept and learning an
effective model to describe them is an example of what the authors have called the
metric learning paradigm.

Fixing the left element of the pair one might then ask what generative sequences
could explain the right. This is the essential idea of 2-way stochastic transduction.
Section 2.5 shows that a somewhat general automaton-based definition for k-way trans-
duction may be reduced to problems within the FGM framework. One may view
speech recognition as a transduction, perhaps in several stages, and the application of
learned transducers to this field represents an interesting area for future work.

Perhaps the best known example of 2-way transduction is that of string edit dis-
tance which is defined as the least costly way to transform one string into another
via a given set of weighted insertion, deletion, and substitution editing operations.
The development in section 2.5.1 begins with a natural reformulation into stochastic
terms first noted by Hall and Dowling in [HD80, P.390-1]. We refer to the result as
stochastic edit distance [RY96b].

Our focus is on the interesting problem of learning insert, delete, and substitute
costs from a training corpus (s1,%1),...,(Ss,1,) of string pairs. The objective is to
minimize the total stochastic edit distance of the collection. In [RY96b] the authors
give such a learning algorithm independent of the FGM framework and report on
experiments. Until now the costs which parameterize edit distance algorithms have
been prescribed not learned. Section 2.5.1 of this chapter describes the reduction of
this learning problem to the FGM optimization framework and may be viewed as an
adjunct to [RY96b] providing a proof of correctness.

The optimized costs are often quite different from the initial ones. It is in this

sense that we learn them. In previous work, the costs have been stipulated after study
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of the problem domain. Even worse, maximally uninformative unit costs (i.e., Leven-
shtein distance) are sometimes stipulated when the problem domain is nontrivial. It
is now possible to improve any educated guess, or start virtually from scratch from
unit costs, to arrive at a set of optimized ones. Algorithms 7 and 8 of section 2.5.1 run
in time proportional to the product of the two string lengths, matching the complexity
of the conventional edit distance computation. Since edit distance has found wide-
spread application our discovery of a simple way to learn costs may lead to improved
performance in many problem areas.

Section 2.5.1 also observes that the notion of string edit distance may be strengthened
so that the cost of an edit operation depends not only on its target but also on context.
For example, such context-sensitive string edit distances allow the cost of inserting a
symbol to depend on the symbol left-adjacent to the insertion site. The result remains
an FGM on one therefore the ability to easily improve costs given a training corpus
is retained.

Several kinds of hidden discrete-state stochastic models are in widespread use
today. Hidden Markov Models (HMM) were introduced in the 1960’s [BE67, BPSW70,
Bau72] and are typically applied in time-series settings when it is reasonable to as-
sume that the observed data are generated or approximated well by the output of an
automaton which changes state and generates output values stochastically. A matrix-
based approach is typically used to formalize this notion, and [Por88] and [HAJ90]
provide nice overviews. Normal (Gaussian) mixtures find application in statistical pat-
tern recognition where items to be classified are represented as real-valued vectors.
Stochastic context free grammars (SCFG) lead to a natural probabilistic interpreta-
tion of natural language parsing. Other model types exist, and are easily formed by
combining and modifying the standard ones.

The situation is complicated by parameter tying; the practice of reducing the num-
ber of parameters in a model by equating two or more different sets of formal para-
meters to a single set. Observations are sometimes discrete and sometimes continu-
ous. Entire models may be mixed together or recursively combined. Some states or

transitions may be nonemitting meaning that no observation is generated. Finally,
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nonuniform time-series models may predict several future data points. All of these
factors make it difficult to write down a single high-level framework with which to
reason about and verify the correctness of a model’s associated algorithms.

The contribution of FGMs is to move instead to a lower-level representation which
is common to all of the models and complicating variations above. As noted earlier
isn’t really the original model which is represented, but rather its truncation to the
given collection of finite observations. By understanding FGMs it is possible to reason
about the others as mappings from their individual description language to an FGM
given finite observations.

Section 2.6 relates the models above to FGMs by describing a reduction for each.
As further illustration it considers the portfolio optimization problem and shows that
the simple iterative algorithm reported in [Cov84] for optimization arises by reducing
the problem to an FGM.

The work described in this chapter began in 1993 with our efforts to model hand-
writing. The focus then was on transduction, in an attempt to evaluate and learn a
notion for similarity for the off-line case. This effort exposed many limitations of the
conventional modeling outlook — problems that extend far beyond handwriting. To
address these limitations we had to break several rules of conventional modeling only
to ultimately discover that these rules are in many cases unnecessary artifacts of the
history that led to HMMs and EM. After three years of generalization, and exercises

in specialization, we arrived at the FGM outlook reported here.

2.2  Finite Growth Models

In this section we develop the theory of Finite Growth Models (FGM) as a class of
nonnegative functionals represented as annotated directed acyclic graphs. The next
section focuses on the special case of probability models. Our formal definition of an
FGM amounts to an intricate recursive data structure, in the computer science sense,
that has been crafted to span a wide range of applications. As a result it may seem

at first to be rather abstract and have little to do with stochastic modeling, but each
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feature is an abstraction of some characteristic required by a problem we considered.
It is the mathematical engine at the center of these problems. In particular much of
our development and notation parallels that of Hidden Markov Models (HMM).

Let = be a tuple observation with components x,..., x4, and X’ denote the space
of all such observations. We will not specify the type of each component since for much
of our development it matters only that appropriate functions exists on the space of
values that a component may assume. Components may therefore represent discrete
values such as letters of the alphabet, continuous values such as real numbers, or other
more complex structures. Within the observation tuple, component types need not be
the same. In simple time series probability-model settings, components do have the

same type, and position within the tuple corresponds to the passage of time.

Definition 1 A finite growth model F' for a d-dimensional observalion space X, is
an 8-tuple (V, E, M,C,S,m,¢,s), such that:

1. (V,E) is a finite DAG with vertices V = vy,...,v, having a single source v,
and sink v,. For e € K we denote by s(e) the index of its source vertex, and by

d(e) the index of ils destination vertex.

2. M is a finite collection {M;} of parameterized nonnegative bounded observation
functionals with corresponding parameters {V;}. We write M;(y|V;) to denote

evaluation of the 1th observation functional, where the domain is not yet spe-

cified.

3. C is a finite collection {C;} of discrete-domain parameterized nonnegative bounded
choice functionals. The size of the domain of C;(7) is denoted |C;|, and the do-
main consists of the integers 1,...,|C;|. The parameters of C; are denoted Y;

and we write C;(j|Y;) to denote evaluation of the ith choice functional.

4. S is a finite collection {S;} of selection functions with domain X where the
range is not yet specified.

5 m:E—{1,...,|M|} is a function associating an element of M with each edge.
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6. c: E—{1,...,]C|} x N is a function that associales each edge with a choice
function and a member of ils range; which is formalized by denoting the projec-

tions of ¢ by ¢y, cy and requiring:

(a) s(e1) = s(ex) = ci(er) = ci(e2), Ve, es € E, so that an element of C' is in

effect associated with each nonsink vertex, and;

(b) For each nonsink vertex v, cy restricted to {e|s(e) = v} is 1-1 and onto the

range of C.,(v)-

The choice value corresponding to an edge e is then Ce ()(c2(€)| Yo () and is
denoted C(e|T) for brevity where it is understood that in this context Y refers

to T. ey — but the subscript is somelimes wrilten for clarity.

7. ¢: E — {1,...,]S]} is an function that associales each edge with a selection
Junction such that for all edges e, the range of S¢(c) matches the domain of M, .).
The observation value corresponding lo an edge e is then M,y (Sce)(2)|Wn(e))
and is denoted M (e, z|V) for brevity where il is understood that in this context

VU refers to W, ) — but the subscript is sometimes written for clarity.

The combined observation and choice parameters are denoted U and Y respectively,
and ® = (U, T) denotes the parameters of F. The value of a source-sink path is the
product of the observation and choice functional values along it. The value F(z|®)
of the FGM is the sum over all source-sink paths, of the value of each. A choice or
observation model whose value is the constant 1 does not affect an FGM’s value and

is therefore said to be void.

Notice that since an FGM is itself a nonnegative parameterized functional, the
definition above may be applied recursively to define an FGM whose constituent
functionals are themselves FGMs.

Direct evaluation of an FGM’s value by enumerating all source-sink paths is of
course not practical. Fortunately F'(z|®) may be efficiently computed using dynamic

programming. To express this precisely requires some notation. Let vq,...,v, be a
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topologically sorted vertex listing. Following the convention of the HMM literature,
we define corresponding real variables aq, ..., a,. The sets of edges into and out from
a vertex v are denoted by Z(v) and O(v) respectively. Using the notation above, the
contribution of an edge e to the value of a path containing it, is C'(e|Y)- M (e, z|¥) The
product of these contributions is the probability of the path. The complete dynamic

program is then given by the following simple algorithm:

Algorithm 1
procedure forward
a; =1
fori=2,...,n

A= D cet(u) o) - Cle|T) - M(e, x| D)

This may be recognized as the forward step of the Baum-Welch HMM forward-
backward algorithm [BE67, Bau72, Por88] adapted to the more general FGM setting.
Following execution «,, has value F/(z|®).

Algorithm 1 is said to evaluate the FGM using its current set of parameters. The
optimization problem we consider seeks a parameter set that maximizes the FGM’s

value

® = argmaxg F'(z|®) (4)

but we will be content to find in some sense locally optimal solutions, and in some
cases to simply make progress. Here z is fixed and it is the FGM’s parameters that
are varied.

The end-to-end concatenation of two FGMs clearly results in another whose value is
the product of the two, so that given a set of observations z1, ..., z,,, the optimization

problem

¢ = argmaxg H F(z;|®) (5)

=1
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is really just an instance of Eq. 4. Viewing {z;} as training examples the optimization
then learns a parameter set, or in the language of statistics and assuming the FGM
corresponds to a probability model, estimates its parameters.

Our approach to this problem extends the idea of Baum-Welch to FGMs. Several
years following the development of HMMs, essentially the same mathematical ideas ex-
pressed in the their algorithm were rediscovered as the expectation maximization (EM)
algorithm for mixture densities [DLR77, RW84]. This work focused on parameter es-
timation for mixture densities, and has had considerable influence on a somewhat
independent community. In what follows we will use the phrase Baum-Welch/EM to
refer to the adaptation of these results to the FGM setting.

The HMM and EM literature deals with probabalistic models, and Baum-Welch/EM
is presented as a method for reestimating their parameters. Our mathematical contri-
bution is the recognition that the method is not essentially a statement about prob-
ability but rather should be viewed as an iterative approach to the maximization of
arbitrary parameterized nonnegative functionals of a certain form. The form consists
of a sum of terms each one of which is a product of subterms. An FGM’s DAG is
a representation of these forms which, for many with appropriate structure, has the
advantages of succinct representation and computational economy. In the interesting
case, the subterms are partitioned or grouped into families sharing common paramet-
ers. The approach then consists of focusing on each family in isolation thus localizing
the problem. Individual family maximization problems are constructed that include
certain weighting factors. These factors are constant with respect to the family’s op-
timization but are computed using the entire DAG and are therefore influenced by
all families. Thus global information is used to decompose the original problem —
localizing it to individual families. If parameters are found that improve any of the
individual family problems, the FGM’s value will strictly increase. The method is
iterative since even exact maximization of every family’s problem may not maximize
the FGM’s value. Instead the process is repeated.

To formalize this idea of simply making progress with respect to a given maxim-

ization problem, the notation:
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argelimb,, f(a) = {a|f(a) > f(b)}

is introduced. Notice that the improvement need not be strict and that the result is a
set of values.

Our definition of an FGM is clearly an abstraction of stochastic modeling. We
remark that it is possible to start from a definition that is yet more general and in
a sense simpler in which only choice models are used and a variable number may
be attached to each edge. But then connecting our results to the mainly stochastic
problems we are interested in becomes more complex, and it is more difficult to see
the connection between our generalization and the original literature.

We therefore develop Baum-Welch/EM for FGMs starting from a lemma that is
stated so as to illustrate its correspondence with the EM literature. It is a statement
about improper mixture densities, i.e. where the whole and its constituent parts are
not necessarily probabilities. This is relevant to FGMs because they may be regarded
as immense mixtures of contributions from every source-sink path. We follow earlier
lines in its proof without requiring proper densities. The lemma may also be derived

starting from theorem 2.1 of [BPSW70] in its most general form.

Lemma 1 (Baum-Welch/EM) Let f(z|®) = Zle g(z|wi, W)h(w;|T) be a finite para-
meterized mizture where {g(-|w;)} and h are nonnegative parameterized functionals
(but not necessarily probability functions or pdfs), w; selects a component of the mix-
ture, and ® = {U, T}. Also define probability P(w;|z, ®) = g(x|w;, V)h(w]| )/ f(z]®).
Finally, assume f(x|®) > 0. Then:

k k

® € argelimbys vy 1 (Z P(wi]z, ®)log g(x|w;, ¥') + Z P(wi|z,®)log h(wﬂT'))
=1 =1

is an improved parameter set. That is, f(x|®) > f(z|®), with the inequality strict

unless ® is already optimal. It is understood that V', X' vary over their defined do-

main.
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proof: We begin by establishing the identity:

Bra(log [(z|®) = ) Plwlz, ®)log f(z|®)

=1
k

— log f(2]®) 3 P(wila, ®)

~ logs(alo)
where w is viewed as a discrete random variable distributed as P(w;|z, ®) and F, ;¢
denotes expectation with respect to it. The point is merely that f(z|®’) is independent
of w since the former depends on &' not ®.
Next with f(z,w;|®) £ g(z|w;, ¥)h(w;|T') we have log f(z]|®') = log f(z,w|®') —
log P(w|z,®") since f(z,w|®) = P(w|z, ®')f(x|®’). So:

log f(z|®") = E.z0log f(z]|®")
= Fy0log flz,w|®") — E o0 log P(w|z, ®")

k k
= ZP(Q}AZL’,(I))lng(.T,qu)/) - ZP(@Z|$,(I))10gP(wZ|J},(I)/)

It follows from Jensen’s inequality that the second summation is minimized by ® =
®’. This can also be seen by recognizing it as —[D(®||®’)+ H(®)], where D(-||-) is the
Kullbak-Leibler distance, and H(-) denotes entropy (see [CT91]). Thus maximizing
the first term, written Q(®,®’') in the literature, will surely increase log f(z|®’) and
hence f(z|®"). But:

k k k
Y Plwilz, ®)log f(z,wil®') = ) Plwlz, @) log g(elws, W')+) | Plwilz, @) log h(wi| ")

i=1 i=1 =1
and the right side is recognized as the object of the argclimb operator in the lemma’s

statement. O

The conditional expectation operator £, ¢ can cause confusion but we use it to

make clear the correspondence with the EM literature. Our discussion in section 2.1
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starting with Eq. 1 represents an alternative approach that is free of explicit mention
of expectation and probability.

To apply lemma 1 to FGM optimization we introduce two more simple algorithms.
The first computes F'(z|®) by sweeping through the DAG’s vertices in reverse rather

than forward order, establishing the values of a new set of real variables 3y,..., 3,:

Algorithm 2
procedure backward
B, =1
foreo=n-—1,...,1

Bi = ZeEO(U{) Bage) - Cle]T) - M(e, x| V)

This corresponds to the backward step of the forward-backward algorithm. After it
has run, £ equals F(z|®), and therefore a,.

We denote by wy,...,wy the source-sink paths through F', and by F(w) the set of
edges along a particular path w, and by Q(e) the set of paths that include edge e. The
contribution of a single path w to the overall value of the FGM is denoted F/(z,w|®)
and given by:

F(z,w®) = [] ClelT)  M(e,z|W)
c€E(w)

So that:

N

F(2]®) =) F(z,w]®)

=1
Next define v, = F(z,w|®)/F(z|®), and then for each edge e define:
Ve 2 Z Yo
wel(e)

Notice that by definition the =, arise from a partition of the set of all source-sink

paths whence it is clear that:
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Proposition 1 The sum of the v, for any cul of the DAG is unity.

The « and 3 variables may be used to compute these ~, via a third simple dynamic

program corresponding to the expectation step of EM:

Algorithm 3
procedure gamma
fori=n—1,...,1

for e € O(v;)
e = (Qs(e) - C(e]T) - M(e, 2[W) - Bye))/ F(2]|®)

3

where either a,, or 3; may be substituted for F'(z|®). As a practical matter algorithms

3 and 2 may be combined.

We are now in position to state precisely how the objective of optimizing an FGM

is decomposed into smaller problems.

Definition 2 An inevact Baum-Welch/EM reestimate ® = (U, T) of the current
parameters ® = (W, ) of an FGM F' given an observation x is formed by solving two

sets of independent optimization problems:

1. For each i the improved parameters W; of observation model M; are given by:

U, € argclimby g, Z Ye - log M (e, z|¥';)

e€m~1(4)

2. For each i the improved parameters Y; of choice model C; are given by:

T, € argclimbqy |, Z Ye + log C(e|T";)

e€ey ' (i)

where the v, are computed based on ® = (U, T). The exact Baum-Welch/EM reestimate

is formed by replacing the argclimb operations with argmax. By m™'(-) and ¢™'(-) we

mean the set valued inverses of functions m and c.
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The exact form corresponds to the historical definition of the Baum-Welch/EM
reestimate. However, since this chapter’s focus is on decomposition, and not mathem-
atical issues relating to particular choice and observation models, we will use “Baum-
Welch reestimate” to refer to our inezact form defined above. This allows our frame-
work to include models for which exact solution is not convenient. Also it is interesting

to note that one may choose to not reestimate one or more models, and still improve

the overall FGM.

Theorem 1 The Baum-Welch/EM reestimate ® satisfies F(z|®) > F(z|®) with the

inequality strict provided that progress is made in at least one subsidiary problem.

Remark: this theorem’s message is one of decomposition. That is, that the subsidiary
problems may be considered in isolation, and any progress made will strictly contribute
to progress in the overall problem.

proof: We write:

N

Fzlo)=>"| I M(ezlw) || ] Clelrs)

=1 e€E(w;) e€E(w;)

9(w|wi,¥) h(wi|T)
which makes clear the correspondence between the FGM and lemma 1. Now by their

definitions ~,, = P(w;|z, ®) so from the lemma we have:

N

N
P € argmaxg v Z’ywilog H M (e, z|¥';) —I—Z’ywilog H C(e]T)

=1 e€E(w;) =1 e€E(w;)

P € argmaxg v Z Z Yo, log M (e, z|W';) —I—Z Z Yo, log C(e]T;)

1=1 e€E(w;) 1=1 e€E(w;)
The double summations above enumerate every edge along every path though the
FGM. To complete the proof we have only to enumerate them in a different order:

|M| O]

® € argmaxg v Z Z Z v, log M (e, z|¥';) —I—Z Z Z v, log C(e|T";)

1=1 eem~—1(z) we(e) =1 cecl (i) wEQ(e)
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Recall 7. = >~ cq. 7w 50!

|M| O]

P € argmaxg v Z Z Y. log M (e, z|¥;) —I—Z Z ¥ log C'(e]| YY)
i=1

=1 eem—1(M;) eEcl_l(i)

and the parenthesized terms are the independent subproblems of definition 2. O

We now change our focus to computational and data structural issues. The first
part of our discussion deals with the intricacies of recursion. That is, when an FGM
invokes another FGM as one of its observation models. Here, proper algorithm and
data structure design can lead to polynomial rather than exponential complexity as
illustrated by the case of stochastic context free grammars described in section 2.6.2.
We will confine ourselves to finite recursion. The second issue has to do with the
arithmetic demands of FGM computation.

The idea behind reducing the complexity of recursive FGM operations is a simple
one: avoid duplicate work. If a particular combination of an observation model and
selection function occurs multiple times, the combination should only be evaluated
once. Since choice models do not depend on the observation, each should be evaluated
only once. The computation is then ordered so that when an edge is considered, its
choice and observation functions have already been evaluated and their values may
be looked up in constant time.

To formalize this idea recall that M(e,z|W) is defined as M) (Sc(e)(2)|Wnn(e))-
Notice that edge e appears as a function argument. We say M (e, z|¥) = M(ez, 2| V)
if their definitions are the same. Each equivalence class is referred to as a model
application and expressing algorithms in terms of these classes avoids duplicate work.
If for two edges <(e1) # ¢(e2) then by this definition M (ey, z|¥) £ M(eq, x|¥) — even
if S¢(e;) is the same function as Sg(,). For this reason we adjust the definition to
account for equivalences that may exist among the {S5;}.

This adjustment is subtle and we therefore illustrate it by example. Suppose that
the observation model associated with an edge €; of the top level FGM is itself an FGM
F, and that selection function S, is used by e;,. Now within F, assume that some edge
e; uses an observation model m with selection function S,. Then to evaluate m,

selection functions S, and S, are composed. Now focus on another top level edge
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er to which an FGM Fj, is attached using selection function S;. Within Fj consider
an edge e, using the same observation model m as does ¢;, but in combination with
selection function 5,. To evaluate m here S; and S, are composed. So m should only
be evaluated once if S.(S,(:)) and S,(S:(+)) are the same function. This may be the
case despite the fact that S, and S, are not. Thus, whenever possible, equivalence
classes should be defined so as to account for possibly equivalent compositions of
selection functions. This is easily implemented for the class of projection selection
functions introduced in the next section.

Mathematically definition 1 states that each edge has an attached observation
model via mapping m. Computationally the edge instead selects (in practice points
to) a model application structure which identifies the observation model and the cor-
responding selection function. We denote the set of observation model applications by
{M;}. Inclusion within the recursive hierarchy induces a partial ordering on this set
where it is important to realize that a given model application may be referenced at
more than one recursive level. We extend this ordering by specifying that all primitive
observation models are dominated by any FGM. In what follows we will then assume
that {M,} is indexed in topological order so that the top-level FGM is first and the
primitive models form the list’s end.

We also introduce choice model application structures {C;}. Since choice models
do not depend on x or involve a selection function, these structures are in 1:1 cor-
respondence with the choice models themselves and are identically indexed. Many
references may exist to a choice model, and its corresponding application structure
avoids redundant model evaluation by recording the model’s current value. It also
accumulates v contributions during expectation step processing so that a single call
may be made to maximize the model. This is explained later in greater detail.

If an FGM F. is a recursive child of a parent F},, one alternative is to eliminate the
recursion and expand the child inline within the parent by adding vertices and edges
to its DAG. If F. is invoked along edge e between vertices ¢ and j then the first step
of this inline expansion disconnects e from j and replaces the invocation of F, with a

void model. The child F. is then inserted between the disconnected end and vertex j.
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When evaluating F), this inline expansion clearly isn’t necessary since one can
evaluate F. in isolation, record its value in the model application structure, and in
constant time refer to that value where needed in Fj,. The same is true for parameter

reestimation although a brief argument is needed.

Proposition 2 Suppose edge e of FGM F, invokes model F,, also an FGM. Then if
F, is expanded inline within F,, the v values of ils edges are exactly those compuled

in tsolation multiplied by ~..

proof: Let e connect vertices: and j and let w denote some source-sink path of F. and
v its weight. If F. is expanded inline the value of w will be «,C(e|Y )y, 0/ Fp(z|P).
In isolation it is 7,/ F.(z|®). But 7. = a,C(e|Y)F.(2|P)B;/F,(x|®) from which the

proposition follows. O

So if the same model application M; is pointed to by many FGM edges, the right
computational approach is to first accumulate their v values and then to process M;.
Here we emphasize that this approach is more efficient and mathematically identical
to inline expansion. So if at the bottom of the recursion the required argmax problems
are solved, then at all higher levels they are too.

An observation model M; that is not an FGM is said to be primitive, and is

represented by an abstract type for which the following operations are defined:
1. M;: evaluate(z)
2. M;: Estep(z,T")
3. M;: Mstep()

Here z is an element of the range of a selection function and I' is a non-negative
weight propagated down as described in proposition 2. The evaluate function returns
the value of M; at z. Notice that the model’s parameters W; are hidden by the abstract
type. In practice a mutator may be provided to set them and a selector provided for
readout. The names Estep and Mstep follow the EM literature even though FGMs are

not restricted to maximum-likelihood estimation of probability functions and densities.
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Given a sequence of values z1,...,z,, and nonnegative multiplicities I'y,..., T,

the FEstep and Mstep procedures address the following optimization problem:

U; = argmaxy,, H MZ»F] (z;]9;) (6)
j=1
which generalizes Eq. 5. The Fstep procedure is called for each (z;,I;) and then
Mstep is called to reestimate the model’s parameters. For some models the result
is the unique optimum parameter set, but in general the process is repeated. For
example, if the z; are letters of the alphabet, the I'; are positive frequencies, and the
model’s value is a probability for each letter, then Estep need only record the I' values
provided and Mstep can easily determine the unique optimal model. That is:
I';
E]‘ Fj

We point out that if the probability of symbol 7 is zero prior to reestimation, then

P(i) =

7v; and therefore its reestimate P(i) are zero. Such parameters in this simple discrete
model are then effectively disabled since their corresponding choice of alphabet symbol
will always have probability zero.

A simple unique solution also exists for the normal density and others. In the
discrete example above the model is constrained to produce values which sum to
one over the alphabet. Normal densities are constrained to integrate to one. These
constraints are obviously important so that the overall optimization problem has a
bounded solution. But it is important to observe that their precise nature is irrelevant
and invisible to the FGM framework. In particular there is no need for a model to
represent a probability function There is also no need to restrict one’s attention to
models for which unique optimum solutions are readily available. As noted earlier,
any progress made for even one model, will translate to progress in the overall FGM
optimization.

A choice C; is represented by an abstract type for which the following operations

are defined:

1. C;:evaluate(y)
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2. C;: Mstep(T'[..])

Here 7 is the index of an edge and the evaluate function returns its value under C;

given the model’s current parameters T,;. The Mstep procedure is passed the vector

(I'1,...,T¢,) and addresses the following optimization problem:
o |Cil
T; = argmaxyy, H CZ'F] (J17%) (7)
7=1

If C; is a probability function then the problem is exactly that of Eq. 6 and an exact
solution is available. In both cases the solution is mathematically optimal but other
problem constraints might be incorporated into C; or M; that sometimes forbid it.
For example, one might prohibit probabilities from falling below some fixed threshold.
This amounts to a change in parameterization and we will see in a later section that
this capability may be used to alter the meaning of optimal in useful ways. Note
that we might instead have treated a choice model as an observation model over
the natural numbers but decided that their roles are sufficiently distinct to warrant
separate designs.

We now return to our discussion of model applications and begin by describing the
information that must be associated with these structures. An observation application

structure M; contains:

1. M, : model — the integer index of the observation model associated with this

application.
2. M, selector — the integer index of associated selector function.

3. M, : value — a real number representing the most recent model application

evaluation.

4. M;:T' — an accumulator to which values are added by the possibly many places
within the overall model that refer to M;. In the case of primitive models we
may then call Fstep a single time. For FGMs the value corresponds to 7. of

proposition 2 and is used to propagate v values down the recursive hierarchy.
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A choice application structure C; contains:

1. Ci:value[...] — a vector of real numbers representing the choice model’s value

at each integer of its domain based on its current parameters.

2. C;:I'[...] — a vector accumulator to which values are added by the possibly

many places within the overall model that refer to C;.

No model variable is needed since indexing corresponds to that of the choice models
themselves.

Recall that the mathematical definition 1 of an FGM associates edges directly with
elements of M, C, S via functions m, ¢, s — there are no model application structures.
While the FGM along with its associated model application structure lists might
be generated incrementally, it is simpler to imagine that the FGM is first specified
mathematically and then compiled into a form that includes these lists. This compiled
form is denoted £ and merges the M, C. S sets of each FGM into single densely
enumerated sets. In compiled form FGM edges do not point directly to observation
models but rather to observation model application structures. The m function is
replaced by m, to effect this change.

We present evaluation, expectation step, and maximization step algorithms for
compiled FGMs. These are not recursive functions but rather operate by traversing
the global model application lists built during compilation.

Before any of these are called the FGM must be initialized. This procedure
initialize(ﬁ) consists of setting the I' variables to zero in all choice model applica-
tion structures and then evaluating each choice model and recording its value there.

Evaluating an FGM and performing an expectation step are carried out by bottom-
up (reverse order) and top-down (in order) traversals respectively of the model ap-
plication lists. Evaluation returns a single value for F given observation z and also
records the value of all subsidiary models within the observation model application

structures.
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Algorithm 4
function evaluate(F, x)
for each M, in descending index order
if “primitive”

J = M,:selector

k= M;:model
M, :value = My : evaluate(S;(x))
else “an FGM”

M value = result of algorithm 1

return My : value

where algorithm 1 refers to the appropriate observation and choice application struc-
ture value variables rather than computing C'(e|T) and M (e, z|¥).

As for primitive observation models the FGM expectation step procedure accepts
a ' argument. Supplying a value of 1 for each z observed corresponds to the optimiz-
ation problem of Eq. 5. In general these I' values generalize the problem by appearing
as exponents to the FGM’s value as in Fq. 6. The FGM is first evaluated so that the
observation model application structures contain current values. Their I' values are
then set to zero except for the first which corresponds to the top-level FGM and is
set to the function’s I' argument. The main loop proceeds top-down to propagate T’
contributions to lower observation model application structures. Eventually primitive
structures are reached and a primitive expectation step is performed. The FGM’s

value is returned as a convenience since it was necessary to compute it.



CHAPTER 2. FINITE GROWTH MODELS 30

Algorithm 5
function Estep(F,;z:,F)
evaluate(ﬁ, )
for each M;
fe=1 M;:I'=T,else M;:I'=0
for each M, in increasing index order
if “primitive”
J = M,:selector
k= M;: model
My estep(Sj(x), M;:T)
else “an FGM”
Set {v.} using algorithms 1,2,3
for each edge ¢
Mooy T +=7. - M;: T
Cer(ey: Tea(e)] += e - M;:T

return My : value

The FGM maximization procedure maximizes the primitive observation models

and all choice models. The FGM is then reinitialized.

Algorithm 6
function Mstep(F)
for each M;
M;: mazimize()
for each C;
Ci:mazimize(C;: '[. . ])

A

inttialize( 1)

Observe that we do not specify that the models are maximized in any particular

order since if their parameter sets are disjoint so is the act of maximizing them.
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Our notation thus-far has suggested that the parameter sets are in fact independent
but in general they need not be. For example, two models might share the same
parameters but compute two different functionals depending on them. In this case
the two corresponding optimization subproblems of definition 2 are simply combined
into one. From an implementation viewpoint this kind of situation can be handled
entirely at the model type level through communication between them that is invisible
at higher levels. So the fact that algorithm 6 specifies no order for maximization does
not imply that we are limited to the case of disjoint parameter sets.

Analysis of the algorithms above is straightforward from the structure of the com-
piled FGM F'. Let Ng denote the sum over nonprimitive observation model ap-
plications, of the number of edges in the FGM corresponding to each. Then both
evaluation and expectation step processing require O(Ng) + T, time where T, denotes
the time needed to perform the required primitive observation model type operations.
These are described by the final entries in the list of observation model applications.
When these primitive operations are O(1) time the overall complexity is just O(Ng)
since their number cannot exceed Ng. Fach choice model is evaluated once during
initialize. The maximize operation time-complexity is just that required to perform
a maximization step for each observation and choice model in the system. Ignoring
the internal requirements of the observation and choice models, it is obvious that Ia
requires O(Ng) space.

The algorithms above are conceptually straightforward, but an important numer-
ical issue must be faced in their implementation. As one sweeps through the DAG,
the o and 3 variables can easily become too large or small to represent as conven-
tional floating point values. This is true even of the final FGM value. If the FGM
is a probability model, exponent-range underflow is the issue and corresponds to an
extremely small probability of generating any particular observation. For complex
problems this behavior is the rule not the exception since element probabilities in
general decline exponentially with dimension. Logarithmic representation is one solu-
tion but the authors have also explored a floating point representation with extended

exponent range as reported in [RY94]. Because 7y variables are normalized by F/(z)
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they may be adequately represented using standard floating point.

We now briefly discuss the computational complexity of FGM maximization. A
restricted class of FGMs is identified for which maximization is shown to be NP-
complete. Members of this class have constant choice functions that assume value
1. There are two selection functions sy and s; that assume constant values 0 and 1
respectively. Notice that there is no dependency on any observation. Each observation
model has a single parameter bit b and given boolean argument z assumes value
(bAZ)V(bAz). The FGM then assumes a bounded integral value and the maximization
problem is well-posed. The corresponding decision problem is: does there exist a set
of parameter bits such that the FGM’s value is greater than a given integer :?7 This
problem is clearly in NP since given a set of parameter bits, FGM evaluation, which

runs in linear time, may be used to answer the question. We will refer to this setting

as the LFGM (logical FGM) problem.
Theorem 2 LFGM is NP-complete.

proof: The NP-complete SAT problem is easily reduced to LFGM by first associating
an observation model with each variable. If the variable v, v occurs in a clause then
selector sy or sg is used respectively. Clauses gives rise to trivial FGMs in which
each term corresponds to a distinct edge from source to sink with the appropriate
observation model and selection function attached. The FGMs for each clause are
then concatenated to form the final FGM. The set of clauses are then satisfied if and
only if the FGM assumes a value greater than zero. The reduction’s complexity is

linear whence LFGM is NP-complete. O

It is possible to construct reductions like that above where the observation mod-
els are continuous not discrete functions; but further discussion of the complexity
of continuous optimization is beyond the scope of this chapter. These continuous
formulations correspond to stochastic continuous embedding approaches to SAT and
represent an interesting area for future work.

This concludes our development of FGMs as general mixture-forms and in clos-

ing we remark that our framework is certainly open to additional generalization and
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refinement. For example one might introduce choice models that also depend on the
observation (discussed later), or replace the m, ¢, s edge association functions with
distributions. Another approach is to dispense with choice models altogether since
they may be emulated using observation models. Many such variations are possible
but our goal was a development somewhere between empty generalization and over

specialization.

2.3 FGM-based Probability Models

In this section we consider specializations of Finite Growth Models such that their
value represents a probability. The associated DAG and attached models may then
be viewed as an acyclic automaton directing the stochastic generation of objects.
Stochastic modeling is the original motivation for FGMs and much of our nomenclature
is drawn from this viewpoint.

The first step is to specialize the selection functions of definition 1 to projections.
That is, functions that select some subset of the dimensions of tuple observation
x. A projection is characterized by a subset g of the dimension indices of X'. We
associate some subset ¢g. with every edge e of the FGM and then denote by m, (z),
the projection of observation tuple x corresponding to selection of the components in
ge- This then is the selection function associated with e. For some edge e suppose
ge = {2,4}. Then m, (z) is a tuple with two components which are equal in value to
the second and fourth components of . We assume for now that g. # () but will later
see that this is unnecessary. A composition of projections, applied to z, is again a
projection characterized by some dimensional subset; whence it is straightforward to
define equivalence for the purpose of identifying truly distinct model applications for
recursively combined FGMs. The use of projections corresponds to the generation of
observations in arbitrary groupings and orderings — a fact we will rely on later in our
discussion of stochastic transduction.

Next we assume that all choice and observation models are probability functions

or densities. Each C; then corresponds to a stochastic choice among edges to follow.
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Each M; corresponds to stochastic generation of some portion of x (since our selectors
are projections).

Finally we specialize the g. subsets so that along any source-sink path their in-
tersection is void and their union is the complete set of dimensions. Each path then
represents one way in which x might be stochastically generated or grown and cor-
responds to a permutation of the dimensional indices 1,...,d. The “finite growth
model” framework is so named because we imagine that complete observations are
grown, starting from the empty set, in many possible orderings, as specified by the
model’s underlying graph. The value of each source-sink path through the FGM is
the probability of following that path and generating . The FGM’s value is then a
probability function P(z|®) on X, i.e. its sum/integral is one. When it is necessary
to make clear that we are referring to an FGM with the restrictions above, we will
use the term stochastic finite growth model (SFGM).

After algorithm 1 has run, «, gives P(z|®). However the other a values have
meaning as well. In general «; is the probability of arriving at v; and observing that
part of = corresponding to the paths between v; and the source. Note that because
each source-sink path corresponds to a permutation of the observation tuple, every
path from the source to v; must generate the same observation components — possibly
however in different orders. Dually, a; is the probability that random operation of the
machine encounters v;, while at the same time generating those observation compon-
ents accounted for by the source to v; paths. Algorithm 1 sums over all paths through
the FGM but is easily modified to find instead a single optimal path. This is referred
to as the Viterbii decode of the FGM and answers the question: what is the single
most likely explanation for the observation?

Algorithm 2 also computes P(z|®) as ;. In general 3; is the probability of ob-
serving that part of = corresponding to the paths between v; and the sink, given
passage through v;. Dually, 3; is the probability that the machine passes through v,
and proceeds on to generate those observation components accounted for by the v; to
sink paths. Denoting by L the part of z corresponding to paths from the source to v;,
and by R the part of x corresponding to paths from v; to the sink, 3, = P(R|v;) and
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a; = P(L,v;). But P(R|v;) = P(R|L,v;) because an SFGM is a Markov process. So
a; - 3; = P(L,v;, R), i.e. the probability of generating = and passing through v;.

Observe that the meaning of 3; is not simply a time-reversed interpretation of
a;. This is because an SFGM has an intrinsic directionality. In-bound DAG edge
probabilities need not sum to one so simply reversing edge direction does not leave a
well-formed SFGM.

For SFGMs the v, values computed by algorithm 3 are the probabilities P(e|z) =
P(e,z)/P(x); where ‘€’ refers to the event of a transition over edge e. That is, 7. gives
the a posteriori probability of following edge e conditioned on observation (generation)
of z. Given an SFGM and any z, the ~, values must satisfy the following constraint
which can in practice be used as an implementation self-check. It is a specialization

of proposition 1 to SFGMs:

Proposition 3 Given a stochastic finite growth model, an observation wilth nonzero

probability, and v values computed by algorithms 1, 2, and 3, then:
1. If |g.| = 1,Ve, then ) _~. = d.
2. In general, Y _7e - |g.| = d.

proof: The key idea is that the edges that observe a given observation dimension
induce a cut in the DAG but we present the proof from a probabilistic viewpoint.
Assume |g.| = 1,Ve. Because every source sink path path generates each observa-
tion component exactly once, the set of edges E; which generate a particular com-
ponent j, corresponds to a set of mutually exclusive and exhaustive events. Hence
ZeeE] Ple|z) = EeeEj ve = 1. There are d observation components, and these par-
tition £ into disjoint sets {F;}. So > 7. = d, establishing the first part of the
proposition. In general, the {E;} are not disjoint, and the number of sets to which
an edge e belongs is |g.|. Multiplying each v, by |g.| in effect gives each set its own

copy, so that the sum remains d. O

We required above that g. # (). If necessary this restriction may be effectively

removed and one may include so called nonemitting edges in a model. To do so the
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observation tuple is augmented with dummy components each capable of assuming
only a single value. Nonemitting edges then observe these components assigning them
probability one. The result is a probability model on the augmented observation space,
and since its extension was trivial, on the original space.

The m and ¢ functions of our FGM framework may be used to implement the
parameter tying concept from the stochastic modeling literature. When m(e;) = m(es)
the observation models attached to these edges are said to be tied. If the edges leaving
vertex vy map under ¢ to the same choice model as those leaving another vertex vs,
the choice models at vy and v, are said to be tied. In crafting a model there are two
reasons for parameter tying. The first is that it reduces the number of free parameters
in the model and as such combats overtraining. The second is that problem domain
knowledge may suggest that two models represent the same underlying phenomenon.

Equation 5 formalizes the problem of parameter optimization given a training set

T1,..., T, by forming a cascade of identical FGMs. More generally we may write:

® = argmaxg H Fi(z;|®) (8)

i=1

where now a possibly different FGM is associated with each training observation but
all are tied to a single underlying collection of choice and observation models. This
is an important conceptual point since it represents the technique used to deal with
training examples of varying dimension. For example, each x; might represent a
finite time series. Typically the FGMs are instances of a single design — varied in
order to accommodate the structure of the observation tuple. Equivalently the entire
cascade may be regarded as a single FGM operating on a single observation formed
by concatenation of the entire training set. This cascading and concatenation is of
conceptual value only. In practice one merely performs expectation steps for each
pair (z;, F;) followed by a maximization step. There is no need to actually form the
cascade and concatenation. In an SFGM setting Eq. 8 represents the training set’s
likelihood and our goal of maximizing it corresponds to mazximum-likelihood parameter
estimation of statistics.

Ultimately one is faced with the task of maximizing primitive models. For simple
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discrete models and many continuous ones (notably normal densities) each independ-
ent maximization problem arising from theorem 1 has a unique globally optimal solu-
tion and satisfies certain other conditions. Lemma 1 and theorem 1 may then be
strengthened to say that strict progress is made unless one is already at a critical
point in parameter space. Even this does not imply parametric convergence however.
See [BPSW70, DLR77, RW84] for discussion of the convergence and other properties
of the EM algorithm. These mathematical issues including rate of convergence, while
important, are not our focus and we will not consider them further. Clearly relating
various conditions on primitive models to the resulting behavior of the overall FGM
represents an important area for future work.

We saw in the last section that simple discrete models are easily maximized. If
M; is a multivariate normal density then maximization is also easily accomplished
since the weighted sample mean and weighted sample covariance define the maximum-
likelihood parameter set. The weights are ~./I' where I' denotes the sum of all v,
associated with M;. In general, any density for which a maximum-likelihood estimate
is readily available may be used as an observation model, e.g. beta densities for
random variables confined to [0, 1]. See [HAJ90] for a treatment of HMMs including
a compact discussion of the discrete and continuous optimization problems discussed

above.

2.4 Beyond Finite Probability Models

SFGMs as defined in the previous section are probability functions on an associated
finite dimensional observation space. They arise by restricting the FGM framework
in several ways. We now relax certain of these restrictions and show that FGMs may

be applied to a much broader class of stochastic modeling problems and settings.

2.4.1 Truncated Stochastic Processes

In contrast to an SFGM, stochastic models are frequently defined as either infinite

generative processes, or processes that generate finite objects of unbounded size. Time
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series methods such as hidden Markov models are an example of the first kind and
stochastic context free grammars are an example of the second. In the first case the
probability of a finite object refers to the aggregated probability of all infinite objects
that include it — in the case of strings the combined probability of all infinite strings
with a particular finite prefix.

Processes such as these have an associated infinitely deep finite branching structure
which is conceptually truncated to a finite DAG that explains observations of some
fixed length. This DAG is regarded as part of an FGM whose primitive parameterized
models correspond to those of the original process. Given a set of finite observations,
a set of corresponding FGMs is constructed as discussed in earlier sections. In this
way the parameters of an infinite process that best explain a set of finite observations
may be learned using FGMs.

This truncation is conveniently effected within the SFGM framework through the
introduction of null observation models. These are simply functionals that assume the
value zero everywhere and as such lie trivially within the FGM framework. When
generation via the original infinite branching process would result in an observation
component beyond the finite set of interest, a void model is attached to that edge and
it is redirected to the FGM’s sink. In this way the processes infinite graph becomes
a finite DAG with a single source and sink. This is illustrated by our discussion of
stochastic transducers and hidden Markov models in later sections.

A more subtle issue is addressed by the introduction of void choice models which
assume value 1 for each outgoing edge. They are useful when the events associated
with future generation may be partitioned into mutually exclusive sets. Our discussion

of stochastic context free grammars in a later section provides illustration.

2.4.2 Alternative Maximization Criteria

Maximum likelihood (ML) parameter estimation is a best-fit strategy and is therefore
susceptible to overtraining. For example, if a discrete model never observes a given
symbol, its ML, parameters assign the symbol probability zero. The result can be

poor generalization. Also, our discussion thus far has tacitly assumed that a single
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stochastic model represented as an FGM is used to explain a set of observations.
Here too if this model is very complex in comparison to the available training data,
generalization will suffer. The model selection problem consists of somehow choosing
or forming a model of appropriate complexity.

These two issues are highly related and we will now briefly describe how both
may addressed within the FGM framework. The result is a conceptually clear and
computationally tractable approach to implementing more sophisticated estimation
schemes for both existing and new stochastic models. That EM could accomplish
this in general was observed in [DLR77] but these penalized likelihood functions do
not appear to have significantly impacted the use of EM in practice. We consider
two related approaches: maximum a posteriori probability (MAP) estimation, and
minimum description length (MDL). Our discussion begins with MAP.

Earlier sections have shown that Baum-Welch/EM may be used to address the
problem of finding ® that maximizes F'(z|®). The form of this objective corresponds
to maximum-likelihood estimation but we will see that it actually not so limited. Given
a prior P(®) on model parameters the MAP objective is to instead maximize P(®|z).
From the Bayes’ rule it follows that this is the same as maximizing P(z|®)- P(®) since
this quantity is proportional to P(®|z), i.e. the denominator is fixed. We resolve ®
into its constituent parts {U;} and {T;} corresponding to the FGM’s observation and

choice models respectively, and define the overall prior based on independent parts:

p@) 2 (T e | (T PCT)

This product may itself be regarded as a linear FGM denoted Fp with null obser-
vation models, and 1-way choice models having values corresponding to each product
term. Alternatively each term may be represented as an observation model that as-
sumes a constant value for each setting of its parameters. The two FGMs F' and Fp
are then combined end-to-end, or in the case of multiple observations Fp is attached
to the end of Fy,..., Fy. The FGM F computes P(z|®) and Fp computes P(®) so
that the cascade thus formed has value P(z|®) - P(®). Maximizing it will then effect
MAP-guided learning.
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The minimum description length principle states that one should choose a model
and its parameters such that the combined cost of describing these followed by the
encoded observations is minimized. The related notion of Kolmogorov complexity
deals with the smallest such description and is generally not computationally tract-
able. By contrast MDL practitioners are content to fix some parameterized scheme of
representation and optimize the parameters. This does not fully implement the MDL
principle but captures the important tension that must exist between model and data
complexity. The cost of describing the observations is — log, F'(z|®) bits where it is
assumed that F' is a probability function. The cost of describing the model’s struc-
ture is upper bounded by choosing some reasonable representation and counting its
bits. The cost of describing a real valued parameter may be upper bounded by choos-
ing some number of quantization levels ), assuming uniform quantization (typically),
and describing — log 2¢) bits per parameter. Many variations are possible. The final
codelength is denoted L(®) and the total description length is L(®) 4+ — log, F'(z|®).
As in the case of MAP above we assume that L(®) is formed by summing separate
contributions from primitive models. As before these may be regarded as a linear
FGM where the value of the attached models is just the corresponding codelength ex-
ponentiated. Notice that the the MDL and MAP constructions are essentially identical
and for this reason we view MDL as a Bayesian approach in which the prior is not
necessarily a probability model.

The important message is that the original maximization problem may be de-
composed into separate primitive problems even when the guiding criterion is not
maximum-likelihood. Any primitive model for which maximization may be conveni-
ently performed subject to the selected criterion, may be used.

Since the basic FGM is fixed in the discussion above, the cost of describing its
representation in the MDL framework is also fixed with respect to FGM maximization.
However an important part of the MDL outlook is selecting a model of appropriate
complexity. This tension is captured in the FGM framework by forming a finite
mixture of models over a range of complexities. Each model is made up of a basic

FGM augmented with an MDL extension as described above. The cost of describing
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the model’s design now enters the optimization problem since it differs across mixture
components. Rather than selecting a single model complexity, reestimation will learn
a distribution on complexity. Fach mixture component is the a posteriori probability
of its corresponding complexity given the observations. Similarly the MAP setting
above may be extended to include the learning of a distribution on model complexity.
The model with maximum a posteriori probability may be selected if it is important
to identify a single best model. Finally, in the case of MDL the pedantic implementor
will account for the complexity of the initial mixture in the overall optimization.

The result is not MDL at all in its original sense since a single model and parameter
set is not selected. It is more properly regarded as MAP with MDL-inspired priors.

Our discussion above started by placing all penalty terms together at the front of
an FGM. In the model selection example, however, some were placed instead following
an initial choice. This may be seen as a special case of a general strategy in which
penalty terms are placed as deep as possible within the DAG. That is, just before
their first use.

Our discussion has then established:

Theorem 3 Let F' be an SFGM or arise from the truncation of an infinite stochastic
process. Also assume thal the primitive models employed support MDL (or MAP)
mazimization. Then a new FGM F' may easily be constructed with at most twice the
number of edges such that its mazimization corresponds to MDL (or MAP) guided

maximization of F.

The practical significance of this theorem is Baum-Welch/EM may be used to
efficiently implement estimation criteria more sophisticated than ML with which it is
historically associated — and via FGMs it is clear how this can be done for a wide

variety of models.

2.4.3 Alternative Discrete Models

The trivial discrete probability model on an alphabet of & members has £ — 1 nonneg-

ative free parameters that sum to at most unity. Many other possibilities exist. For
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example, if alphabet symbols correspond to states in a truncated Poisson process then
the Poisson probability function P(z|)\) may be used. This is true of a choice model
as well and has application in the modeling of event durations. In general we remark
that the use of nontrivially parameterized choice functions represents an interesting

direction that has received only limited attention.

2.4.4 Observation Context Conditioned Probability Models

In our SFGM framework each edge generates some subset of the observation tuple’s
components such that as one moves from source to sink each is generated once. The
values generated depend only on the edge over which generation is transiting. This
corresponds to the first-order Markov assumption of stochastic modeling. In particular
the value cannot depend upon route followed to reach the edge. But dependence on
observation components generated earlier along the path does not violate the Markov
assumption. Formally the observation models are then conditional probability func-
tions where the conditioning is on earlier observation components — not earlier edge
sequences. Each source-sink path then corresponds to a causal chain of conditional
probabilities so that the FGM’s value is a probability.

Brown observes in his thesis [Bro87] that the HMM output independence assump-
tion may be relaxed to allow generation of the current speech sample window to
depend on the previous one. He then uses Baum-Welch reestimation without reproof.
His focus is on minimizing the number of model parameters — and we suspect that it
is only for this reason that he did not propose longer context dependencies.

Our contribution is then the formalization of this message in general form within
the FGM framework. That is: the problem of optimizing FGMs that employ condi-
tional observation models is reduced to corresponding primitive conditional maximiz-

ation problems.
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2.4.5 Noncausal Unnormalized Models

Given a k x k pixel real-valued image one may model each pixel position as a function
of some surrounding context. If each model’s value is a probability and the context-
induced dependency graph has no cycles, then the individual pixel probabilities may
be multiplied to result in a causal probability model. Causal models are commonly
built by fixing a scanning sequence and choosing contexts with respect to the im-
plied temporal ordering. Since there is frequently no single natural scanning sequence
the causality restriction may limit model effectiveness by preventing all of a pixel’s
neighbors from contributing to its prediction.

If the causality restriction is discarded each pixel’s model is strengthened but their
product is no longer a probability. This corresponds to relaxing the requirement that
the projection functions in an SFGM correspond to a permutation of the observation
dimensions. Noncausal neighborhood systems have proven useful in image processing
[CJ93].

Since reestimation must nevertheless climb we have the result that even a noncausal
unnormalized models like that sketched above may be improved within the FGM

framework.

2.4.6 Dynamic Choice Function

As remarked earlier we might have allowed choice functions to depend on the obser-
vation z. Given choices ¢y, ..., ¢; the FGM may then follow each with probability
p(ci|z). In contrast with the conventional static notion of state transition probabil-
ity, such choice models are dynamic — responding to the observation. This provides
interesting new modeling flexibility. If the portion of z used to influence the choice
is generated earlier in the DAG (closer to the sink), then one can build probability
models using dynamic choices. We remark, however, that useful models may exist
that violate this assumption and therefore generate values that without normalization

do not represent probabilities.
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2.5 Stochastic Transducers

The notion of transduction has its roots in classical formal language theory (e.g.
[Ber79]) and represents the formalization of the idea of a machine that converts an
input sequence into an output sequence. Later work within the syntactic pattern
recognition outlook addressed the induction problem for a particular subclass of finite
transducer [OGV93]. More recently a stochastic approach was taken in [BF96] where
hidden Markov models were used to capture an input-output relationship between
synchronous time series.

Finite growth models can be used to derive Baum-Welch/EM based learning al-
gorithms for stochastic transducers. This interesting class of stochastic models capture
in a somewhat general way the relationship between dependent symbol streams. In
particular there is no assumption that the streams are synchronous, and the symbols
singly or jointly generated during transduction can depend upon all context informa-
tion, i.e. that in every series involved.

Many problems of pattern recognition and artificial intelligence such as speech or
handwriting recognition may be viewed as transductions from an input signal to an
output stream of discrete symbols — perhaps via one or more intermediate languages.
In this conceptual framework it is interesting to note that speech synthesis is merely
transduction in the reverse direction. In this section we first discuss transduction
in general terms, and then focus in detail on the simple memoryless transducer that

corresponds to the widely-used notion of string edit distance.

Definition 3 A k-way stochastic transducer over alphabets Xy, ..., Y is a stochastic

automaton A = (S, M) where S denotes ils states and M its matriz of transition
probabilities — such that associated with each transition e is a probability function p.
on X7 X ... x X5 such that p.(e,...,¢) = 0 where € denotes the empty string. In
the generative view of transduction the machine outputs nonempty k-tuples which are
appended to k initially empty outputl strings. If any of the p. values depend not just
on e but also on the output generated thus-far, then the transducer is said to have

memory. Otherwise it is memoryless. Automaton A is assumed to start from state
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zero, and the possibility that the alphabels are continuous is left open.

Given observed strings S = (s1,...,5%) the transducer T assigns a probability
Pr(S) which represents the sum over generation sequences that generate S, of the prob-
ability of each. The FGM formalism provides a natural way to understand and reason
about this complicated process and we now describe the reduction of a stochastic
transducer and associated finite observation to an FGM.

Denoting the states of A by {S;} the transducer’s infinitely deep temporal branch-
ing structure is truncated to form an FGM with states {Sfl""’é’“} where each /; is a
nonnegative integer and Sg° is the source. The superscript indices correspond to
the number of symbols that have been written to the transducer’s k£ output tapes.

The FGM contains another set of states {Tf;""’g’“} defined similarly except that the
subscript refers to a pair of states in the original automaton. Edges exist between these
two state sets but not between members of each. There are edges leaving each state
Sfl"“’g’“ leading to Tf;"“’é’“,j = 1,...,|5]. Row 1 of stochastic transition matrix M
provides the corresponding choice model where the matrix entries are the parameters.
The observation model attached to each such edge assumes the constant value 1.

Directed edges exist between T' states and S states reflecting the writing of k-tuples
to the output tape. For each transition e from state 5; to .S; in the original automaton,
several FGM edges may be required because the function p, may generate output of
differing lengths. More formally for all 7y,...,7; € N*¥ an edge exists leaving Tf;-"“’é’“

it el ti . :
Sj1+“’ “F%  Fach such edge generates observations according to p., but

leading to
only string tuples with lengths i1,...,7; € N are allowed. Void choice models are
used for all edges from 7" to S.

Finally positions in the string-tuple observation are enumerated and appropriate
projectors serve as the FGMs selection functions and associate observation models with
the generation particular positions in the output tape. Notice that along a source-sink
path the corresponding projections are disjoint and do cover all positions but do not
in general do so in a simple left-right fashion. This completes our reduction of T' to

an FGM.

We now evaluate the complexity of FGM operations by counting edges. In general
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each function p. may generate output tuples of unbounded total length. But in some
cases such as that of string edit distance discussed shortly, the length of the string
generated in each tuple position is bounded by some value D.

If L. denotes the length of the longest string in the observation tuple, the FGM has
LF|S| states { S} and there are |S| edges leaving each of them leading to 7' states.
The T states number L*|S|>. The out-degree of a T' state is clearly O(D*) making
the total number of edges O(L* D*|S|?) and this gives the time and space complexity
of FGM operations assuming constant time for primitive model operations. The out-
degree of a T state is at most L* in the FGM so an alternative expression O(L**|S|?)
applies even when f has infinite support.

Having reduced 7' to an FGM we identify several important operations and briefly

describe their corresponding FGM computation:

1. A transducer learning step consists of improving the parameters of 7' (those of

M and of each p.) based on a training set (si,...,s}3),...,(s7,...,s7). This

computation is performed using standard FGM Baum-Welch/EM steps.

2. There are several transducer evaluation operations:

(a) Joint — yields the probability of the observation tuple. This is accom-
plished by standard FGM evaluation and amounts to computing the joint
probability of the strings that comprise it.

(b) Marginal — gives the probability of some subset of the tuple’s dimensions,
i.e. marginalizes over the remaining dimension. This is easily computed by
computing the appropriate marginal of each primitive observation model.
That is, if such a model involves one or more marginalized tuple dimensions,
the corresponding primitive marginal becomes the value of the observation

model.

(c) Conditional — gives the conditional probability of some subset of the tuple’s
dimensions given the others. This is best computed by dividing the joint
probability by the corresponding marginal.
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3. The transduction decode operation consists of maximizing over free-tuple posi-

tions their probability conditioned on the other position which are fixed. In the
case of 2-way transduction this means fixing one string and finding the most
likely second. Since the denominator is constant in the quotient defining the
conditional we have only to maximize the numerator, i.e. the joint probability of
the selected tuple positions given the other fixed positions. This maximization
is performed via Viterbii decode where the fixed positions are regarded as con-
stant. This identifies the most likely transduction path. The result is built by
following this path, and for each attached observation model outputting values

corresponding to its mode.

A cascade operation may also be defined where the output of one transducer be-

comes the input to another. The development above has then established

Theorem 4 By reduction to an FGM the evaluation, learning step, and decode op-
erations for a stochastic transducer may be performed in O(L*D*|S|%) or O(L**|S|?)
time and space assuming constant time primitive model operations. The constant time

assumption holds in particular given the use of canonical discrete probability functions

for all models.

Note that the space complexity of evaluation and decode is actually smaller since
only a forward pass is performed and there is no need to maintain a fully formed DAG
in memory. Also, our earlier comments regarding alternative maximization criteria
apply to transducers as well and other generalizations are possible including multiple

start states and parameter tying.

2.5.1 String Edit Distance

The edit distance between two finite strings s,¢ over finite alphabet ¥ is the least
costly way to transform s into ¢ via single-symbol insertions, deletions, and substitu-
tions. The non-negative costs of these primitive edit operations are parameters to the

algorithm. These costs are represented as a table ¢; ; of size |¥| + 1 x |¥| 4+ 1, where
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row and column 0 correspond to an additional alphabet member € representing the
null character. See [SK83] for review or [HD80] for a compact discussion. The entry
in table position 7, j gives the cost of substituting symbol j of s for symbol ¢ of ¢. The
first row gives insertion costs, the first column gives deletion costs, and the remaining
entries specify substitution costs. The table need not be symmetric. Recall that a
simple dynamic program finds the edit distance in O(]s| - |t]) time.

The task of learning an optimal cost table is clearly under-constrained, because the
string edit distance for all strings may be trivially minimized by setting all edit costs
to zero. Our outlook is stochastic and we therefore interpret each cost as —log,() of
the corresponding event probability. For example, an entry in the top row expresses
the probability of choosing to insert a particular symbol into the left string. The
natural constraint then requires that the probabilities that underly the cost table must

sum to one. Expressed in terms of costs ¢; ;, this translates to:

Y o =1
0]

Rather than imagining an editing process that transforms s into ¢, we equivalently
imagine that the pair (s,t) is grown in a series of steps of three kinds: joint steps, left
steps, and right steps. This outlook was first introduced in section 3.2.2 of [HD80].
Our contribution is its further development to include the learning of costs and the
construction of more sophisticated distance functions as described later in this section.
In [RY96b] the authors implement the learning of costs and give experimental results.
This report also

The process is formally a 2-way stochastic transducer with a single state, no
memory, and D = 2. The initial state of the process is ((,0). A joint step con-
catenates symbols to both elements of the pair. A right step adds a symbol to only
the right element of the pair, while a left step adds a symbol to the left element. In
the language of string edit distance, a joint step corresponds to a substitution opera-
tion. When a joint step adds the same symbol to both strings, one is substituting a
symbol for itself. A right step corresponds to an insertion operation, and a left step

corresponds to a deletion operation.
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Figure 1 depicts the table now denoted y; ; after conversion to probabilities. The
zero entries correspond to infinite costs. The stochastic choice between left, right,
and joint generation is implicit in this table. That is, x combines choice and obser-
vation probabilities. For example, the sum of the top row may be interpreted as the

probability of choosing to perform a left insertion.

Definition 4 The “stochastic edit distance” belween strings s and t, is given by
—log,(P((s,t)|x). Here the probability refers to the infinite generative stochastic
process in which symbols are inserted at the end of the right string, or at the end of
the left string, or jointly at the end of both. Specifically, it s the probability that pair

(s,t) will occur as an intermediate stage of generation, during a random trial.

Figure 2 depicts the FGM corresponding to stochastic edit distance between strings
of length 4 and 5. Its 3-way branching pattern follows from the structure of the
corresponding growth process and matches exactly the dependency structure of the
dynamic program for conventional edit distance.

Notice that all but the sink and the bottom and rightmost vertices have ternary
out-degree, and that the edges leaving them are drawn with solid lines. These are all
in tied. Both their choice and observation models are specified by y corresponding to
normal operation of the generative stochastic process. Edges drawn with dotted lines
implement truncation of the process and employ null models. These might have been
depicted instead as individual long edges directly to the sink.

The — log, () operation converts the probability to a non-negative “distance”, which
we will later see corresponds closely to the standard notion of edit distance. Also
notice that in the definition, we refer to the probability of the ordered pair (s,?).
This is an important distinction since y need not be symmetric, and it might be that
P((s, ) £ P((L )l

It is also possible to interpret P((s,1)

X) with respect to finite event spaces. If we
denote by S| 1 the FGM state corresponding to the argument string lengths, then the
x). That is, the probability

probability defined above may be written: P((s,t), S|y,
of generating s and ¢ while passing through FGM vertex with coordinates (|s|, [¢]).
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right insertion (insertion)

€
€0 .

left ordinary alphabet

insertion ———e member substitution

(deletion)

Figure 1: Augmented table of edit distance probabilities. This table sums to one, and
the corresponding edit costs are —log,() of its values.

It is straightforward to compute the probability of event S|, ;. Division then yields
the conditional probability P((s,t)|x, Sjs,¢|) which amounts to conditioning on string
lengths. It is also possible to define the FGM differently in order to directly implement
conditioning on string lengths [RY96b].

The stochastic edit distance —log, P((s,t)

x) is highly related but not identical to
conventional edit distance. If stochastic table y is converted by —log,() to a table of
non-negative costs then conventional edit distance corresponds to the log-probability
of the single best path through the FGM — i.e. the Viterbi decode. Stochastic edit
distance is the sum over all paths. Basing decisions on the Viterbi decode is analogous
to focusing on the mode of a distribution while stochastic edit distance corresponds
to the mean. In classification systems we expect that both forms will lead to nearly
identical decisions. The improved costs we learn in the next section will provably
reduce stochastic edit distances, but we also expect that in practice they will also
improve results for the conventional form.

We formalize the application of FGMs to stochastic edit distance with the following:

Corollary 1 Let x be a table of stochastic edit distance probabilities, and (s1,t1),
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(s2,12), ..., (87,1r) denote a set of string pairs over finite alphabet X, where { bounds
the length of any single string. Next let E,(s,1) denote the stochastic edil distance
—log, P((s,t)|x). Then:

1. There exists an O(|s| - |t|) time, O(min(|s],|t|)) space algorithm to compute

E.(s,t) — matching the complexity of the conventional dynamic program.

2. There exists an O((*T) lime and space algorithm for producing a revised cost

table x" using Baum-Welch/EM such that:

where the inequality is strict unless x is a critical point.

proof: Apply theorem 4. O

The FGM formalism is useful to arrive at a correct solution but because of the
extensive parameter tying employed in our construction, the associated computations
may be greatly simplified. There is no need to build actual DAGs during the compu-
tation. Also, as remarked earlier, the choice model is implicit in y so that creation of
separate choice and observation models is unnecessary when computing E, (s, t). The
probability of passing over an edge is just the corresponding entry in y.

The result is algorithm 7. It requires an (|s| + 1) x 2 array of a values. We write
a; j to denote an element, where 1 < i < |s|4+1 and j is 1 or 2. This array corresponds
to the vertices within two adjacent columns of the FGM as depicted in figure 2. The
logarithm F, of the joint probability of s and ¢ is returned rather than the probability
itself, so that the caller need not deal with extended range floating point values. As
observed by [HD80], the algorithm’s structure resembles that of the standard dynamic

program for edit distance.
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Algorithm 7
procedure Fuvaluate(s, t)
forj=1,...,|t|+1
k=2—j 3mod?2
=14 j3mod?2
fore=1,...,]s|+1

fe>1Vvy>1
;=10
else
o =1
ifi>1

ik + = Qi—1)k * Xs(i_y),0
ifg>1

Ok + = Qi X0ty
fe>1A75>1

ik += Qi—1),0 " Xs_1)t(_1)

return log, a(|s|+1),k

52

As in the case of evaluation, there is no need to create separate choice and observa-

tion models when implementing reestimation. A brief argument establishes this fact.

Assume we do have separate models. Then each edge e is of type left, right, or joint,

and during Baum-Welch/EM the quantity v, will be added to a choice accumulator

and also to an accumulator corresponding to the observed alphabet symbol or sym-

bols. So the total v contribution to each of the three choice accumulators will exactly

match the contribution to its corresponding observation model. Hence, if we instead

add the v values directly into an initially zero array Y, the total contributions to the

left column, top row, and interior will exactly correspond to the choice accumulator

contributions above. So after normalization, Y will represent the same model as that

resulting from reestimation based on separate models.

Algorithm 8 is the central routine in the stochastic edit distance learning process.
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It is called repeatedly with pairs of strings. The current cost table y;; must be
initialized before the first call and the improved cost table Y must be set to zeros. As
each pair is processed, non-negative values are added to locations within Y. After all
the pairs have been presented the Y array is simply normalized so that the sum of its
entries is one, and then represents the set of improved costs. This entire is repeated
to further improve the model. That is, X is copied to x and X is again set to zeros.
The sequence of training pairs is then presented again, and so on.

The algorithm uses two work arrays, o, ; and 3; ;, corresponding to the algorithms
1 and 2 respectively. It is assumed that these arrays are large enough to accommodate
the training pairs. They need not be initialized by the caller. As in algorithm 7 it is
possible to reduce the size either o or 3 but not both. Doing so results in a constant

2:1 space savings but for clarity we present the algorithm using complete arrays.
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Algorithm 8
procedure LearnCosts(s, t)
fori=1,...,]s|+1
forj=1,...,|t|+1

fe>1Vy>1
o;; =0
else
o =1
ifi>1

Q5+ = QG-1),5 * Xs(i_y),0
if > 1

QG5+ = QG (i-1) " X0ty
fe>1A75>1

Qij + = Qim1),(i-1) " Xsgoiy -1

fori=1s|+1,...,1
forj=|t|+1,...,1

if 7 < |s| Vg <[t

Bi; =10
else

Bsl+uy. e+ = 1
if 1 < |s]

ﬁi,j += /B(H—l),j * Xs:,0

Nsio+= (@i Xsi0 - Blirr),) ] Qsl1), (1t} +1)

if 5 <[t
Bii+= BiG+1) - Xoy,

Xog, += (@i Xot, - Bigi+n)/oisi+1).x14+1)

ifi < |s|Aj < It

Bii += Bisn),+1) * Xait;

Nsot; = (g Xaity * Blitn) +1) /0Qs41).0t14+1)
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Figure 2: Finite growth model DAG corresponding to computation of the edit distance
between strings of length 4 and 5.

In algorithm 8 we remark that one should escape after the o computation in the event of
a zero probability observation. Also, the self-check of proposition 3 has a particularly
simple interpretation here: if one accumulates all contributions to Y, doubling those
corresponding to substitutions, the result is exactly |s| + |¢|.

We now illustrate by example that one has no guarantee of convergence to a global
optimum. Let s = ABB and t{ = C'C provide the sole training pair. If the probability
of substitutions A,C and B,C are 0.32, and that of left-inserting B is also 0.32,
and left-inserting A has probability 0.04, then learning converges to a local optimum
in which these operations have probability 1/3, 1/3, 1/3, and 0 respectively. The
algorithm has in effect chosen to edit s into ¢ by substituting A, ', then B, and
finally left-inserting A. At convergence the pair’s distance is 3.75 bits. But it is
clearly better to left-insert A and perform two B, C substitutions. Initializing the edit
operations near to this objective leads learning to the desired solution and the pair’s
distance is reduced to about 2.75 bits. Initializing the four parameters to 0.25 yields
a third local maximum giving distance 3.92 bits.

String edit distance is a very simple example of stochastic transduction. Using it

to ground our discussion we now return to more general observations.



CHAPTER 2. FINITE GROWTH MODELS 56

The costs employed in the edit distance computation depend only on the targets
of the edit operations. They are independent of the context in which the edit opera-
tion occurs. Yet in most naturally occurring edit processes the likelihood of an edit
operation depends strongly on the context in which the operation occurs. Within the
FGM framework one may strengthen the model for edit distance so that the cost of an
edit operation depends on the context in which that operation is performed. Insertion
and deletion costs can depend on one or more positions of trailing context in a single
string while substitution costs can depend on a joint context constructed from both
strings. This modeling technique should lead to more powerful similarity functions
and is applicable to transducers in general.

Context models may also be built by encoding context into the state space. To do
this one limits observation models to trivial probability functions that assign probab-
ility 1 to a single alphabet member. After passing over an edge one then has certain
knowledge of the most recent symbol. Beyond this the graph can be designed so that
arrival in a state implies exact knowledge of a trailing finite context of any desired
length. In effect the modeling work is moved entirely to the choice models. Hav-
ing arrived at a vertex the choice model predicts the next symbol conditioned on the
past. Note that this technique is an example of something that does not generalize to
continuous observations.

To specify simple stochastic edit distance, we must learn only a single x table.
With contexts, many more free parameters are added to the model. In principle very
large context models can be built, but in practice their size is limited by the amount
of training data available increasing the need for MDIL or MAP guided optimization.

The learning of a 2-way transducer’s parameters represents one formalization of
what the authors have called the metric learning paradigm. The training set may
be regarded as positive examples of the are similar concept and after learning, the
negated logarithm of the FGM’s joint evaluation or conditional evaluation is viewed as
a measure of dissimilarity. The mathematical metric axioms are not in general satisfied
so by “metric learning” we really mean any learned quantification of similarity or

dissimilarity.
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This idea applies beyond string settings and for processes more complex than our
definition of transduction which specifies that a tuple observation is grown from left to
right by concatenation. The string edit distance DAG need not be viewed as arising
from 2-way transduction. The salient characteristic that implements metric learning
is that some edges observe both strings while others see only one. It is not essential
that as one moves from source to sink the string positions considered within each
tuple position also move from left to right.

It is then clear that distances analogous to string edit distance may be defined for
objects whose natural growth description is more complex than the linear DAG that
corresponds to a string. We do not fully develop this direction but now make precise
the corresponding DAG structure.

In the case of edit distance each FGM vertex faces three choices. Two choices
correspond to single symbol generation, and a third choice selects joint generation.
One may view the resulting graph as a product of two linear FGMs, each of which
grows a single string from left to right. We now generalize this notion. Given two
FGMs F4, Fg we define the generation DAG of the product FGM denoted F4 ® Fp

as follows:

1. The vertices of Fy @ Fg are pairs (v, w) where v, w are vertices of Fy and Fp

respectively.
2. Edge (v,w) — (r,s) exists in Fy ® Fp iff:

(a) v = r € Fy and w = s. Edges of this type run the left FGM only while
keeping the right idle. For edit distance this corresponds to insertion into

the left string, or;

(b) w — s € Fp and v = r corresponding in edit distance to right string

insertion, or;

(c) v—=r € Fyand w - s € Fg. Here both machines run and a pair of

symbols are generated corresponding to edit distance substitution.
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It is readily verified that )4 ® Fg has a single source and sink, and that each path
corresponds to a permutation of the joint observation tuple so that after specifying

the necessary choice and observation models, a well-formed SFGM results.

2.6 New Perspectives on Existing Models

In this section we relate FGMs to three models in widespread use: hidden Markov
models, stochastic context free grammars, and normal mixtures. The problem of
optimizing the log return of a fixed portfolio is also shown to correspond to a trivial
FGM. We focus on reduction of these problems in standard form to FGMs but remark
that any of them may be improved by using MDL or MAP guided optimization as

described earlier.

2.6.1 Hidden Markov Models

A hidden Markov model (HMM) is an automaton that changes state stochastically
after generating an observation. See [Por88, HAJ90] for reviews. Its state transitions
are given by a stochastic n x n matrix M, a vector 7 gives the probability of starting
in each of its n states, an output function b; is associated with each state 7, and there
are one or more designated final states. As time passes the machine changes states
and generates observations which form an output time series.

An HMM is essentially a 1-way stochastic transducer restricted so that all trans-
itions from a state specify the same observation model and generate a single observation
component (D = 1). If there are more than one possible starting states then the entire
corresponding FGM is preceded by a choice that plays the role of vector m. The edges
leading to the sink are weighted one or zero according to membership in the set of
final states.

Because output distributions are associated with states not edges in an HMM,
every FGM edge leaving a state is associated with the same distribution. For this
reason the transducer reduction can be simplified by eliminating the 7' states whose

only purpose is to remember the previous state. So if the HMM states are denoted
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Si,...,5, then the FGM states are just {S!} where the superscript corresponds to
time.

This reduction of an HMM to an FGM amounts to the simple unfolding in time of
the HMM’s operation and is therefore done with no loss of efficiency. In some sense
it is a simpler representation of the HMM because the temporal order of events has
been made explicit.

Reduction in the other direction is problematic. Given a finite alphabet it is not
hard to construct an equivalent HMM, i.e. one that imposes the same extrinsic prob-
ability distribution. But the canonical such machine may have exponentially more
states because an FGM can generate observations in arbitrary order. Moreover, since
an FGM can generate observations jointly, the standard HMM formulae for reestim-
ation do not apply. Finally, an FGM that generates joint continuous observations
will correspond to an HMM only if these joint densities are trivial, i.e. a product of
independent terms. This suggests that FGMs may be more expressive than HMMs.

We now discuss an important variation: time duration HMMs [Lev86, RC85] and
sketch their rederivation in FGM terms illustrating the utility of parameterized choice
models. See [HAJ90] pages 218-221 for a brief review. If in a conventional HMM a
state transitions to itself with probability p, then duration in that state is geometrically
distributed, i.e. as p"~*(1 — p). This functional form restricts the model’s ability to
match the characteristics of some applications such as phoneme recognition.

In an ordinary HMM, diagonal transition matrix entries give the self-transition
probabilities. These will be modeled separately so M is assumed to have a zero
diagonal. The reduction of a time duration HMM to an FGM starts with the same
state set {S!} but requires an additional set {V'}. Associated with a state S? is a
parameterized choice model that assigns a probability to each possible state duration
A from 1 —oo. Edges exist from S! to states V™ and along each, A observations are
generated according to the same distribution. To express this strictly within the FGM
framework a linear sequence of A edges is necessary with a single observation model
attached to each. Associated with V't2 is a simple discrete choice model induced by

transition matrix M. Edges are then directed to the corresponding S]HA state with
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no attached observation model. Notice that since the diagonal of M is zero there is

no edge leading to S'™*. Even though the choice model associated with each S state

has infinite domain, the observation is finite so only a bounded number of edges are
included in the FGM.

The simplest such infinite choice model has a parameter for every duration value
— a nonparametric approach. Since the training set is finite this reduces to a standard
discrete choice model which is easily maximized. Because of limited training data
one might prefer a model with fewer parameters. A simple way to reduce parameters
is to group them into bins and assume that within a bin probability is uniform. For
example bin sizes might be 1,2,4,8,.... Here duration 1 lies in the first bin, durations
2,3 in the second, 4,5,6,7 in the third, and so on. Parametric models may also be
used.

We close our discussion of HMMs with the topic of nonemitting states, i.e. states
that do not generate any output. These complicate our reduction to FGMs and con-
ventional processing as well since cycles among them may have unbounded duration.
Common practice is to preprocess models with such states in order to eliminate self-
cycles. Denote by N the set of nonemitting states and by S — N the rest. Now
suppose a transition occurs from an ordinary state to a member of N. The next
transition may leave N immediately or cycle through its states for some time before
doing so. But since no observations are generated we are merely interested in the
ultimate departure event. For each state in N it is straightforward to compute the
probability of ultimately exiting to one of the states in S — N. These values become
entries in the transition matrix associated with that state. All entries associated with
self-transitions among N are set to zero. This modified machine will impose the same
extrinsic distribution as the original but is free of nonemitting cycles and may be

reduced to an FGM.

2.6.2 Stochastic Context Free Grammars

A stochastic context free grammar (SCFG) is a conventional context free grammar

[HU79] with a probability attached to each production such that for every nonterminal
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A the probabilities attached to all productions “A — ...” sum to unity. Applied to a
sentence of finite length these grammars have an interesting recursive FGM structure.
Baum-Welch/EM may then be used to learn the attached probabilities from a corpus
of training sentences. The result is essentially the same as the inside-outside algorithm
described in [Por88|.

We assume the grammar G is in Chomsky normal form and use ¢ to denote the
input sentence. Viewing (G as a stochastic generator of strings each nonterminal A
may expand into sentences of many lengths. We write P(A — t[i...7]) to denote
the probability that A will generate the substring of ¢ consisting of its ¢th through
Jth positions. In particular the probability of ¢ is P(S — t[1...L]) where L denotes
the length of ¢ and S is the start symbol. For a terminal b, P(b — t[i...j]) = 1 if
i = j and t[1] = b, and zero otherwise. The SCFG is a probability function over all
sentences, so that it is a subprobability model for those of any fixed length. For this
reason null models (described earlier) are employed in the construction to truncate
the normally infinite generation process.

The FGM corresponding to G restricted to length L is a recursive construction
starting with the start symbol. We name the top level FGM S because it com-
putes the probability of S applied to ¢[1... L]. The construction is the same for each
nonterminal A with corresponding productions Ay,. .., Ay4) where N(A) denotes the
number of productions of the form “A — ...”. The FGM A" has N(A) edges from
source to sink and computes P(A — t[i...J]). Its single choice model corresponds

to the probabilities associated with A in the grammar. Each edge generates observa-

tions 7,...,7 and the attached models are denoted Ai"'j, ey A%.(jA) where each Aé"'j

is defined as follows:

1. If production Ay is of the form A — b where b is a terminal, then the model’s
value is P(b — t[i...j]) as defined above. Within the FGM formalism this is
achieved by using a null model when i # j, and otherwise a discrete model with

P(b) = 1.

2. If production Ay is of the form A — BC and ¢ = j then a null model is used

since each of B and (' must ultimately generate at least one terminal. If 57 > ¢
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then the attached model consists of an FGM [BC]* which encodes all ways
in which BC' might generate t[i...j]. Each of its j — ¢ source-sink paths is
distinct and consists of two edges. Along the kth path numbered from zero, the
first edge invokes FGM B'** and the second C7~%+/, The generation events
corresponding to each path are mutually exclusive so a void choice model is
employed. That is:

j—i-1

PBC —1fi...)= S PB—ti...i+k)-P(C—=1[j—k...5)

k=

o

Each FGM’s B*+** and C7=%+J generate strictly shorter substrings of ¢ than
does A"+ whence the recursion is bounded and ultimately descends to produc-
tions of the form A — b described above. The choice models are tied across

occurrences of each FGM A*7 in this recursive hierarchy.

The time and space complexity of the resulting model follows easily from an ana-
lysis of its structure. There are O(L?) FGMs of the form A"+ and O(L?) of the form
[BC]"+. The first kind contains O(1) edges while the second has O(L) edges. The
result is O(L?) time and space complexity. The same counting of FGMs and edges
demonstrates that complexity is linear in the grammar’s size.

Beyond emulating conventional SCFGs, our FGM construction suggests more com-
plex models. For example, it is possible to learn a probability for each production
conditioned on the length of the sentence it generates. Here the single value associated
with each production is replaced with a vector of probabilities indexed by sentence
length. The vector’s length may be set to the maximum length of a sentence in the
training corpus. The result is a model which generates only sentences of finite length.
More generally each vector position may correspond to a range of lengths, e.g. less
than 5, between 6 and 20, 21 and over. If the final range is open-ended then the model
generates sentences of unbounded length, as does a SCFG. This new model has more
parameters, but given enough training data may outperform an SCFG. To implement
it one merely ties the choice models associated with each instance of each FGM A%+

differently. In the construction above they are all tied. Instead we tie the choice model
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for A% to AF* provided j —i = £ — k, i.e. both instances generate output of the

same length.

2.6.3 Normal Mixtures

A k-component normal mixture is a probability density function of the form:
k
Flzlpr, oy pgy 21,000, X)) = Zci N,z (2)
i=1

where Ele ¢ =1,¢ >0for i =1,...,k, and N(-) denotes a multivariate normal
density. Such a mixture corresponds to a trivial FGM that contains exactly & DAG
edges, each from source to sink, and a normal density along each. The FGM’s single
choice model corresponds to the mixing parameters ¢q,...,c;. Unlike transduction,
HMMs, and SCFGs, normal mixtures are an example of an FGM which generates
an observation tuple of fixed finite dimension. They may be used as the observation
model along any edge in a parent FGM. Our earlier reduction of HMMs to FGMs then
results in the mixture-density HMMs widely used in speech recognition. To illustrate
the variations possible we observe that tying every component with the same index to

a single density yields the semi-continuous variation [HJ89].

2.6.4 Portfolio Optimization

Our final example consists of a problem that is not strictly speaking a stochastic
probability model but nevertheless fits easily into the FGM formalism. Given stocks
x1,...,xq and observations of their returns over many fixed time periods, the object-
ive is to decide how much of each should be held in an optimal investment portfolio.
A trivial reduction to FGMs results in a simple iterative algorithm. This problem is
considered in [Cov84] where the same algorithm, essentially a rediscovery of Baum-
Welch/EM, is described. The multiplicative update perspective of [Cov84] is essen-
tially the growth transform of [BPSWT70].

We describe this problem using the notation of [Cov84] and reduce it to an FGM.
A stock which appreciates by 25% in say one month, is said to have a return of 1.25.
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The returns of each stock over time period ¢ forms a vector denoted X'. We use
stochastic vector b to denote our portfolio allocation and the portfolio’s return over
period ¢ is then b'X*. This is captured by a simple FGM consisting of a d-way choice
corresponding to b with each edge leading directly to the sink. An unnormalized ob-
servation model is attached to each edge and assumes the value of the selected stock’s
return. Given T observations X',..., X7 and letting diag(h) denote the diagonal

matrix formed from b, one Baum-Welch/EM iteration is given by:

T . :
— diag(b) X’
b= Z bt X7

i=1

after b is normalized to have unity sum. This matches the equation given in [Cov84].
Assuming the X7 occur with equal probability then maximizing the training set’s

likelihood also maximizes our expected log return from the portfolio.

2.6.5 Other Applications

Bayes nets [Pea88], also known as graphical models [Lau96], can be represented in
their simplest forms as FGMs in which vertices correspond to variables, edge weights
to conditional probabilities, and vertex a posteriori probabilities (v) to belief. More
complex networks can still be represented as FGMs although the reduction is more
involved. The relationship between these networks and hidden Markov models is
elucidated in [SHJ96].

Exploring the relationship of FGMs to error correcting codes such as those based on
trellises, and the recently developed class of turbo codes [BGT93], is a subject for future
work. We wonder broadly whether our framework’s generality might lead to better
codes, and in particular whether DAGs that encode nonlinear time orderings might
have value. Such a possibility is suggested by [WLK95, Wib96]. The relationship
between Turbo codes and Bayes nets is examined in [MMC96] and understanding the
relationship of FGMs to this specific outlook is another interesting area for future

work.
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Chapter 3
Learning String Edit Distance Costs

Chapter 2 introduced the application of finite growth models to the problem of learning
the parameters of stochastic transducers in rather general form, and considered the
case of a string edit distance in greater detail. That is, a memoryless single state
2-way transducer.

In this chapter we establish the practical utility of this approach by learning an
optimal string edit distance function from a corpus of examples and reporting on the
performance of this function in a concrete application: the identification of words in
conversational speech given a phonetic transcription and reference dictionary!'. The
function we learn exhibits one third the error rate of Levenshtein distance [Lev66]; the
canonical untrained edit distance case. We first implemented the transduction at the
heart of our approach in August 1993 for the problem of classifying grey-scale images
of handwritten digits.

3.1 Introduction

The speech recognition problem may be viewed as a transduction S — T from a
signal S to text T'. The text is typically regarded as a sequence of words from a fixed

vocabulary recorded in a lexicon L. This transduction bridges a wide representational

'The work described in this chapter was first described in [RY96b] and will appear in [RY97a]

66
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gap and investigators commonly introduce an intermediate phonetic language P and
the problem is then viewed as S — P — T

Our experiments focus on the second segment P — T. Crossing the entire gap
from S to T' through the learning of multistage transductors represents an interesting
area for future work.

We assume that P is given and seek to identify the correct corresponding sequence
of words from L. Moreover, we assume that the word boundaries within P are known,
and that L contains one or more valid phonetic spellings for each word in the vocab-
ulary.

Our problem is then to accept a sequence of noisy phonetic spellings taken from
P, and output the correct sequence of words from L. This problem has the virtue of
being easily stated but retains a strong connection to the original speech recognition
task.

The corpus we use is considered to be quite difficult and indeed current systems
exhibit an error rate of above 45% on it. This is in contrast to error rates closer to
5% on easier tests. We describe and evaluate several variations on a basic model. The
best of these exhibits an error rate of slightly more than 15%, where we remind the
reader that this figure applies to the P — T leg only and assumes knowledge of word
boundaries.

The phonetic spellings that form our input are generated by human experts listen-
ing to S. For this reason our results might be viewed as an optimistic estimate of what
is possible. On the other hand, generation of the output word sequence involves no
high order language model; only the probabilities of individual words are considered
when forming the output sequence. Such high order models are an important factor
in existing speech systems and might therefore reasonably be expected to improve
results under our approach. Also, more sophisticated context sensitive transducers
are possible within our theoretical framework, and these also promise to improve per-
formance. So despite our simplifying assumptions we submit that our experimental

results are of some practical significance to the original problem.
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3.2 The Basic Model and Approach

Our generative model begins with the choice of a word w according to a simple prob-
ability function on the vocabulary. Given w a particular lexical phonetic spelling ¢
is selected from the alternatives recorded in [ — again according to a probability
function. Finally, a surface phonetic spelling s is generated from ¢ via stochastic
transduction — and in the case of our experiments, using a single state memoryless
transducer corresponding to string edit distance. Note that the alphabet used to ex-
press lexical phonetic spellings may differ from that used to represent the surface

phonetic spellings seen in P. This model is written:

p(s, L, w) = p(s|f)p(l|w)p(w)

and the recognition problem we face is formalized as:

W = argmax,, p(w|s)

= argmax,, p(w,s)/p(s)

(w, )
> p(slo)p(tho)p(w)

€L(w)

p
= argmax,, p
= argmax,,

¢

where L(w) denotes the set of lexical phonetic spellings that L records for w — and
we observe surface phonetic spelling s. The transduction-based marginal p(s|f) is
properly computed by dividing the standard joint transduction probability p(s,f) by
the marginal evaluation p(¢). In our experiments however, the unnormalized joint
probability was used instead so that the framework above is only approximated. We
will return to this subject at the chapter’s conclusion.

The issue is then one of estimating the parameters of this model which were omitted
from the notation above for simplicity. We now begin using ® to denote them. They
include the probability function used to choose words, that used to choose lexical

phonetic spellings, and the transducer’s parameters as well.
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We are given a training set of pairs (w, s(w)) where w is a vocabulary word and
s(w) its surface phonetic transcription. Our learning objective is then to maximize

over ®:

II > wlsw)t, @)p(tlw, ®)p(w], @)

wetrain /€ L(w)

The test set consists only of surface phonetic forms, and we face the recognition
problem described above which recovers a vocabulary word for each of these observed
surface forms. This objective is recognized as an instance of the ML, mixture dens-
ity /function parameter estimation problem and we apply the expectation maximization
(EM) [DLR77] as discussed in chapter 2.

Our implementation actually models the product p(¢|w, ®)p(w|®) as a single joint
probability p(¢,w|®). The initial parameters for this mixture and all edit distance
costs are uniform. A fixed value of 0.1 is added to the mixture’s expectation accumu-
lators as a statistical flattening precaution — preventing the probability of any lexicon
entry from being driven to zero during learning. No effort was made to optimize this
constant. Each EM iteration replaces ® with new values.

The a posteriori probabilities p(f|s(w),®) are computed during EM for each
¢ € L(w) and these are used to weight the expectation steps taken for the condi-
tional transduction p(¢|s(w)|®). Here we make the simplifying assumption that this
conditional form may effectively be maximized by instead maximizing the joint trans-
ducer probability p(¢, s(w)|®) so that we can directly apply the FGM-based algorithm
for learning string edit distance described in the previous chapter. Strictly then the
new ® may not be an improvement but empirically is.

This approach to learning solves an important problem: that of corresponding the
observed surface phonetic form s(w) with the hidden lexical phonetic forms ¢ € L(w).
Intuitively s(w) is paired with the most likely £ and used to train the transducer. Of
course this matching is stochastic. Later in this chapter we will see that the simpler
approach of merely training all possible pairs with equal emphasis results in poor

performance indeed.
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3.3 The Switchboard Corpus

The Switchboard corpus consists of over 3 million words of recorded telephone speech
conversations [GHMO95]. The variability resulting from its spontaneous nature makes
it one of the most difficult corpora for speech recognition research. Current recognizers
exhibit word error rates of above 45% on it — compared to rates closer to 5% on easier
tests based on read speech. Switchboard also includes a lexicon with 71,200 entries
using a modified Pronlex alphabet (long form) [LDC95].

Roughly 280,000 of Switchboard’s over 3 million words have been phonetically
transcribed manually by ICSI using a proprietary alphabet [GHE96].

Both the Switchboard lexicon and ICSI transcription were filtered to make the two
compatible. We removed 148 entries from the lexicon that included unusual punctu-
ation ([<!.]). A total of 73,068 transcript deletions were made as follows: 72,257 with
no corresponding valid syntactic word, 688 having empty phonetic transcript, 88 with
an incomplete transcript, 27 and 8 that included the undocumented symbols 7 and !
respectively. Note that symbols 7 and ! are not part of either alphabet (long forms)
and are used only in the transcript.

The final lexicon used in our experiments contains 70,952 entries describing 66,284
syntactic words over an alphabet of 42 phonemes. The final transcript used in our
experiments has 214,310 entries — 23,955 of which are distinct. These correspond to
9,015 syntactic words over 43 phonemes (32 Pronlex plus a special silence symbol).

The transcript was divided 9:1 into 192,879 training and 21,431 test words.

3.4 Experimental Variations

We report on the results of 56 different experiments resulting from an exploration of

several different degrees of freedom:

4 lexicons x 7 distance functions x 2 learning-recognition strategies
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3.4.1 Lexicons

Our first set E1 of experiments uses the Switchboard lexicon. This lexicon contains
many words that are never used in the ICSI transcript and experiment E2 replaces it
with a lexicon containing only those 9,621 entries that correspond to words that do
occur in the transcript.

Experiments E3 and E4 leave the Switchboard lexicon behind and construct one
instead from the ICSI transcript. Experiment E3 uses a lexicon built from the training
transcript. It contains 22,140 entries for 8,570 syntactic words. The test transcript
includes 512 entries that do not occur in this lexicon so that 2.4% represents an error
rate floor for experiment E3. The lexicon for experiment E4 is built using the entire
transcript and has 23,995 entries for 9,015 words.

We report the fraction of misclassified samples in the testing transcript, that is
the word error rate. For each surface phonetic form in the test transcript, one or
more syntactic words are postulated by the decision process. The fraction of correctly
classified words is then the sum over the test transcript of the ratio of the number of
correct words identified to the number of postulated words. The fraction misclassified
is then one minus this fraction.

With nothing more said experiment E4 would seem to be uninteresting since its
lexicon contains an exact match for each phonetic spelling present within the test
transcript. One might therefore expect 100% accuracy from this experiment. But the
lexicon contains a large number of homophones, that is different syntactic words that
have at least one phonetic spelling in common. This arises from two sources. First,
conventional phonetic alphabets have limited expressiveness, especially when applied
to short words in rapidly articulated conversational speech. Second, in such speech,
words frequently change their phonetic shape considerably and in so doing collide with
other words. That these phenomena are significant is clearly demonstrated by our

results (reported later) for experiment E4.
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3.4.2 Distance Functions

Three basic forms of string edit distance are compared in our experiments. The
simplest of these is the classic Levenshtein prescription which assigns zero cost to
identity substitutions and unity cost to all other operations. Stochastic edit distance
is defined in chapter 2 as the negative logarithm of the probability that two strings
are simultaneously grown using left-insertion, right-insertion, and joint-insertion op-
erations. This form effectively aggregates all transductions between the two strings.
Viterbi edit distance instead selects only a single transduction (path through the
FGM) of maximal probability. It is then identical to conventional edit distance where
the edit costs are the negative logarithms of the corresponding generative insertion
probabilities. Note that by definition the Viterbi edit distance can be no less than the
stochastic edit distance. Also observe that the Levenshtein form has no stochastic in-
terpretation strictly within our framework since infinitely many identity substitutions
is less costly than even a single unity cost operation. The problem derives from the
fact that its cost table includes zero entries. Any such table is problematic. But given
that all entries are strictly positive, there is always an equivalent stochastic Viterbi
form. So in particular the Levenshtein form may be approximated by assigning the
zero cost operations some small cost e.

Levenshtein distance is parameter-free but may be viewed as having four para-
meters: identity substitution, nonidentity substitution, insertion, and deletion — set to
0, 1, 1, and 1 respectively.

Both the Viterbi and stochastic forms of edit distance are parameterized by their
table of elementary operation costs. The number of such parameters is then usually
much greater than four.

To determine if such fine control over costs is really necessary and justified by
the available training data, we implement a tied form of both Viterbi and stochastic
edit distance that reduces the parameter set to the four given above. Our Viterbi-tied
form may then be viewed as a generalized Levenshtein-style prescription. This tying
is easily implemented by simply summing over each category of operations during the

maximization step.
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Thus far we have defined five distance functions: Levenshtein, Viterbi distance (un-
tied), Viterbi distance (tied), stochastic distance (untied), stochastic distance (tied).
The final two: Viterbi distance (mixture), and stochastic distance (mixture) are com-
binations as described and motivated below.

As transducers are simply probability functions and we may form finite mixtures
in the usual way. Such combinations are surprisingly effective since the —log cost
of selecting a component is usually very small compared to the total —log of the
mixture’s value. For this reason they operate as a stochastic or gate of sorts. That is,
the probability is high if that of any component is.

One use of mixtures is to combine models of increasing complexity as a strategy
to combat overtraining. We implement a particular simple case in which our tied and
untied model forms are combined by a uniform fixed mixture.

Another richer use of mixtures uses them to capture possible modality in the
process that generates surface phonetic forms from lexical forms. Different speaker
types might well exhibit very different transductive characteristics and a stronger
overall model will result if they are separately modeled and combined as a mixture.
Different transducers might also be trained for very different corpa and then combined
in a mixture. There are many other possibilities and the general approach represents
an interesting area for future work. In our experiments the mixing coefficients are
fixed and uniform, but they might have been optimized using withheld training data
[FJMS80].

3.4.3 Learning-Recognition Strategies

During training we do not know a priort which lexical phonetic form gave rise to the
surface form observed. A feature of our hidden stochastic mizture approach is that all
possibilities are considered, each reinforced in proportion to the model’s a posteriori
estimate that it generated the observation. During recognition, contributions from all
possibilities are combined within a proper probabilistic framework.

A simpler ad hoc approach reinforces all possibilities equally during learning. Dur-

ing recognition a simple nearest neighbor approach is taken. That is, the least distant
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lexical phonetic form determines the decision.

All experiments were performed for both strategies to support comparison.

3.5 Experimental Results

We begin by presenting results for our hidden stochastic mixture approach to the
problem — our preferred solution. Results for the ad hoc approach are presented last.
Table 3.5 summarizes these results. The error rates shown are the best observed
during training. That is, as though an oracle told us when to stop performing EM

iterations.

Leven- Stochastic Distance Viterbi Distance

shtein | Tied | Untied | Mixed | Tied | Untied | Mixed
E1 || 48.04 | 18.96 | 15.47 | 16.11 | 18.88 | 15.44 | 16.11
E2 || 33.00 | 18.82 | 15.30 | 15.98 | 18.75 | 15.26 | 15.99
E3 || 61.87 | 24.01 | 20.35 | 21.77 | 23.98 | 20.36 | 21.76
E4 || 56.35 | 21.60 | 15.98 | 18.92 | 21.59 | 15.98 | 18.91

Table 1: Word error rate for seven string distance functions in experiments E1-F4.

Notice that the transduction distances exhibit error rates less than one third that
of Levenshtein distance. As we anticipated the Viterbi and stochastic edit distance
behave similarly. The untied model is superior in all cases.

The graphs that follow give performance throughout training. The initial perform-

ance of transduction distance is poor because training starts with a uniform model.
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Figure 3: Experiment E1: Word error rate vs. EM iterations for seven models using
the full Switchboard lexicon. Improvement is rapid. After only one EM iteration,
all transduction distances have less than half the error rate of Levenshtein distance.

After two EM iterations, the untied and mixed models have less than one third the
Levenshtein error rate.

Switchboard Experiment E2
T T T

T T T T T T
Levenshtein —
Tied ----
0.9 Untied ----- -
Mixed
ﬁh Tied Viterbi -
Untied Viterbi -----
0.8 "\ Mixed Viterbi -----
0.7
0.6 |-
o
w
2
0.5 |-
04 \
\
p
0.3 | )%
0.2 %‘L.& -
0.1 I I I I I I
0 1 2 3 4 5 6 7 8 9 10

EM lterations

Figure 4: Experiment E2: Word error rate vs. EM iterations for seven models using
the subset of the Switchboard lexicon whose words are present in the ICSI transcript.
The untied and mixed models have less than half the error rate of Levenshtein distance.
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Switchboard Experiment E3
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Figure 5: Experiment E3: Word error rate vs. EM iterations for seven models using
a lexicon derived from the ICSI training transcript. The untied models have less than
one third the error rate of Levenshtein distance. The three lines that are apparent
during later EM iterations correspond to the untied, mixed, and tied models, respect-
ively. The performance of all transduction distances is continuing to improve at 10
EM iterations.
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Figure 6: Experiment E4: Word error rate vs. EM iterations for seven models using
a lexicon derived from the entire ICSI transcript, including both training and testing
portions. The untied and mixed models have less than one third the error rate of
Levenshtein distance. The three lines visible during later EM iterations correspond to
the untied, mixed, and tied models, respectively. The performance of all transduction
distances is continuing to improve at 10 EM iterations.
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We now turn to results from our ad hoc approach described earlier. It is apparent
that trained transduction distances perform poorly relative to simple Levenshtein
distance — especially in settings E3 and E4. None of the transduction distances is
significantly better than the untrained Levenshtein distance in this approach.

Despite its simplicity this approach is conceptually unsatisfactory because it fre-
quently trains the transducer with unrelated pairs, diluting the effectiveness of learn-
ing. Indeed the performance of the trained edit distances is not very different from
that of Levenshtein distance. Our results make clear that the added complexity of
our preferred stochastic mixture approach is not just conceptually superior, but is

empirically warranted.

Leven- Stochastic Distance Viterbi Distance

shtein | Tied | Untied | Mixed | Tied | Untied | Mixed
E1 | 48.04 | 48.39 | 46.78 | 46.95 | 48.41 | 46.75 | 46.91
E2 | 33.00 | 33.51 | 31.54 | 31.82 | 33.68 | 31.55 | 31.81
E3 | 61.87 | 62.80 | 61.89 | 62.31 | 62.89 | 61.86 | 62.26
E4 | 56.35 | 56.35 | 56.73 56.36 | 56.35 | 56.73 | 56.35

Table 2: Ad hoc approach: Word error rate for seven string distance functions in
experiments E1-E4.

The graphs that follow show performance during training.
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Figure 7: Experiment E1: Word error rate vs. EM iterations for seven models using
the full Switchboard lexicon. Both untied and mixed models perform slightly better
than untrained Levenshtein distance, while the tied models perform slightly worse.
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Figure 8: Experiment E2: Word error rate vs. EM iterations for seven models using
the subset of the Switchboard lexicon whose words are present in the ICSI corpus.
Both untied and mixed models perform slightly better than untrained Levenshtein
distance, while the tied models perform slightly worse.
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Figure 9: Experiment E3": Word error rate vs. EM iterations for seven models using
a lexicon derived from the ICSI training corpus.
untrained Levenshtein distance.

No model performs better than
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Figure 10: Experiment E4’: Word error rate vs. EM iterations for seven models using

a lexicon derived from the entire ICSI corpus, including both training and testing

untied and mixed models.

portions.No model performs better than untrained Levenshtein distance, although the
tied models equal its performance. Additional training decreases performance for the
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3.6 Future Work

An immediate opportunity exists to improve performance by adding a higher order
language model to the system. Mixtures of untied transducers also may help given
additional training data.

But our positive results for experiment E3 suggest perhaps the most interesting
next step: replace the manual transcript labeling step, with an automatic process —
even if the phonemes it recognizes are somewhat noisy and do not correspond perfectly
with standard categories. Then enhance the transductive model to include memory,
that context sensitivity.

Even this is just one step towards a yet more interesting objective: demonstrating
that one may bridge the entire S — 7' gap within the framework of stochastic trans-
duction, learning if necessary one or more hidden languages analogous to the artificial

phonetic language invented by human linguists.

3.7 Postscript

In section 3.2 we made the simplifying assumption that p(s|f) is optimized by instead
optimizing the joint transduction probability p(s,£). Moreover we remarked that our
experiments did not in fact exactly implement the framework described.

This section clarifies these issues by providing an alternative formulation for which
no such assumption is necessary. Its implementation and evaluation is, however, left
to future work.

The model derivation of section 3.2 may be altered so that the joint probability
p(s, 0, w) is factored instead as p(s,£)p(w]|s, ) = p(s,€)p(w|f) resulting in the revised

model and decision rule:

W = argmax,, p(w|s)

— argmax,, p(w,s)/p(s)

= argmax,, p(w,s)
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= argmax,, Z p(s, 0, w)
LeL(w)

= argmax,, Z p(s, O)p(w|l)

LeL(w)

The virtue of this alteration is that the joint transduction probability p(s,?) is now
used directly.

Another issue surrounds this transduction probability. As we’ve implemented it, it
does not directly correspond to a generative model for finite strings. But as discussed
in section 2.5.1 of chapter 2, it is possible to compute honest probabilities that are
conditioned on string lengths. Combining such a model with one for the lengths leads

to the generative model required to neaten the conceptual framework of this chapter.



Chapter 4
A Modeling Assembly Language

We have seen that the DAG-based FGM perspective can be used to express many
models. This chapter describes certain aspects of the design of a model assembly
language MODL based on the FGM framework — and represents an extended abstract
describing our implementation efforts in progress. In our view, hidden Markov models,
stochastic context free grammars, Bayes nets, stochastic transducers, mixture models,
and many others are best thought of and perhaps implemented as high level languages
with which one can succinctly specify members of a particular model class. The com-
putations ultimately performed may all be expressed as FGM operations suggesting
that one should first compile these high-level specifications into FGM form, where
they can be executed by a single computational engine. This approach sweeps many
technical details such as extended numerical range requirements and the intricacies of
recursively specified models, down to the assembly language level. Another benefit of
our approach is that alternative optimization criteria such as MDL are conveniently

implemented without major impact on the high level design.

4.1 General Architecture

The kernel of the MODL system is ANSI C-based and includes a subroutine-level pro-

grammer’s API. Parameter passing is particularly simple so that interfaces to other
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languages are straightforward.

Because of the subroutine-level API’s simplicity, an interpreted ASCII scripting
language is easily wrapped around it to further simplify its use and broaden the set of
potential users. Such an ASCII model specification might then be generated by any
language, or perhaps by specialized graphical model design tools — and represents a
highly portable model description.

Additional APIs might be developed for popular engineering /mathematics support
programs such as Mathematica and Matlab.

The system is object oriented, and even in the subroutine API, objects are named
using character strings. Objects can be written or read from a file, and a portable
ASCII representation is always used.

The components of a complex recursive FGM that includes observation models
that are themselves FGMs, may be specified in an arbitrary order. At specification
stage only names are recorded for each object referred to. Once the set of required
objects has been specified, the top-level FGM is assembled into a working model. At
this time all references are checked with respect to existence and type, and references
by name are converted to internal pointers. The resulting object is then a functioning
model to which data may be presented.

Additional run-time checks exist to help ensure model correctness. The error
reporting philosophy is that errors should be described as thoroughly as possible, but
no attempt is made to recover, i.e. the program terminates. This is accomplished
using a uniform approach to error reporting that identifies several levels of context to
aid in diagnosis. In the case of the scripting language, this context begins with the
input line number, includes the software API subroutine involved, and may include
more detailed internal information.

Several software development steps are taken to help ensure the quality and portab-
ility of the resulting system. First, it is based at the lowest level on memory allocation

primitives and other modules of libpa — the “library of practical abstractions” [RY97h].

! Mathematica is a product of Wolfram Research, and Matlab is a product of the Math Works Inc.
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Because of this, run-time analyzers such as Purify? are particular effective identifiers
of common implementation problems. At a higher level, the subroutine library is built
on top of a single object infrastructure developed for MODL . The library is compiled
and tested on a wide variety of systems including Sun Solaris, Linux i586, DEC Unix?,
and if possible on SGI Unix and Microsoft Windows NT. A library test program and
test scripts are included with the planned distribution. In addition, a quick system
self-check is provided at the subroutine API level to give users additional confidence
that MODL is operating properly on their system. Finally, two versions of the library
and scripting language interpreter are made available. The first has a great deal of
“asserts” enabled in the MODL system and libpa libraries as well. The second disables
them resulting in a considerable performance increase.

The system may be extended over time to add new primitive model types. These
must be implemented in C on top of the system’s object infrastructure and subject to
other interface requirements.

The rest of this chapter discusses the structure of the library and its API. The
scripting language remains to be designed but we anticipate that it will consist of a

straightforward encapsulization of the subroutine API.

4.2 The Object System

Objects are created within a specified memory set (MSET). They may be destroyed
individually, or for convenience as part of the destruction of an entire MSET. The
caller may create a hierarchy of MSET's starting from a single root. The destruction
of any element destroys all children as well. The MSET approach is taken to simplify
the generation of programs free of memory leaks. An alternative considered was the
implementation of a specialized garbage collector made possible through the use of
intelligent pointers.

Objects have an ASCII name within a single global name space. Some objects

support a copy operation and most support file read and write operations that allow

2Purify is a product of Pure Software Inc.
3Unix is a registered trademark of AT&T
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the object to be saved in a portable ASCII form.

Observation vectors are not objects within the system, but rather are simply arrays
of double; each element of which has one of three attributes: ordinary, unknown, or
out-of-bounds. A component of known value is of type “ordinary”. Components
labeled “unknown” cause FGM evaluation to attempt to marginalize with respect to
them. It is also possible to infer the value these positions with the result written back
into the corresponding positions. Hidden Markov and many other models correspond
to a DAG with depth dependent on the length of the observed time series. Using
MODL one creates a DAG deep enough to represent the longest expected series, and
then uses the “out-of-bounds” attribute to mark positions beyond the end of the series
under consideration. This is a general mechanism that applies to other variable length
models as well. Discrete observations are represented using integer values. Run time
range, value, and dimensionality checking is performed by the observation models and
selection functions that deal with observations.

In addition to libpa, the system’s utility substrate includes error reporting routines,
common support for input and output of basic data types, and a data structure hashing
facility used for self-checking. It also includes several as of yet unreleased libpa
modules providing linear algebraic, normal density related, and dictionary functions.

There are only seven object types in the system:

e FFGM SPECIFICATION

e OBSERVATION MODEL

e OBSERVATION ARGUMENT

e CHOICE MODEL

e CHOICE ARGUMENT

e SELECTION FUNCTION

e SELECTION ARGUMENT
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4.2.1 FGM Specifications

This object type is best thought of as an FGM in symbolic form. That is, the references
to things like observation models attached to its edges, consists of object names. The
entities referred to need not yet exist when the specification is made.

The creator returns an empty specification that includes an empty DAG. A pro-
cedure is provided to add new vertices to the DAG. Vertices are identified with natural
numbers. Zero designates the source. The enumeration need not be dense, but space
is linear in the maximum value used. When a vertex is created a choice model is
identified along with an argument (see discussion of arguments below).

Once nodes ¢ and j exist, a procedure may be called to connect them using a
directed edge. The corresponding choice model index must be specified along with a
selection function and argument, and observation function and argument. An edge
name is also assigned for use in Viterbi decoding.

The object supports topological sorting of its vertices at which time any cycles
or certain other structural problems are detected. The user never invokes this sort
however. It is called by the creator (assembler) of an observation model of type FGM.
File I/0 is supported for FGM specifications, but not for their assembled form. That

is, reassembly is required each time an FGM is read from a file.

4.2.2 Observation Models and Arguments

The observation model object class is in some sense the heart of the system. Presented
with an observation, members evaluate its probability* or support Baum-Welch/EM
iteration. Other operations are described below.

The initial release of MODL supports three types of observation models: simple
discrete probability functions, multivariate normal densities, and FGMs. A creator
is provided for each. The FGM creator accepts as input an FGM specification, and

produces an FGM observation model object. In this assembly process, an entirely new

4Strictly we mean the value of a nonnegative functional, since FGMs need not be viewed as
stochastic models. Nevertheless, since so many applications are probabalistic, we will use the term
“probability.”
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data structure is created from the specification. All symbolic references become simple
pointers. An important value added by this step has to do with recursive FGMs. Such
a system is organized into form that can support computation in time linear in the
overall edge count. This amounts to properly ordering all required computations
down to the primitive model level. Equivalent invocations of observation models are
detected and only performed once. Here “equivalent” refers to the combination of
selection and observation. What is considered is the net selection, not the sequence
of steps. So the result of several layers of selection by projection can be identical to
a single selection. This capability is important when implementing models such as
stochastic context free grammars.

In the initial MODL release the observation argument object holds a boolean value
that selects between ordinary model instances, and those required to implement MDL
reestimation (see chapter 2). When the argument is true, the observation model
assumes a value based on the observation. When false, its value represents a penalty
term corresponding to the current value of the model’s parameters. These penalty
terms form in the simplest case a linear chain from the DAG’s root and represent
multiplication of the standard observation probability by the appropriate penalty term.

A Viterbi decode procedure may be called to locate a maximum weight (most
likely) source-sink path through the DAG. A sequence of edge names is returned.
An inference call is provided that replaces all unknown observation values with their
most likely value given the known observation components. Evaluation attempts to
marginalize with respect to unknown components. As a result one can easily compute
all conditional probabilities as well. Because of the FGM framework’s generality,
these calls may not make sense in all settings, and for others may not return an exact
answer.

During the evaluation a-pass, encountering an out-of-bounds observation adds a
temporary zero weight edge directly to the sink. The (-pass then uses this list in its
processing. In this way only the model edges relevant to the available observation

data are processed.
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The parameters of an observation model need not be reestimated during a max-

imization step, and a special mutator call provides this option.

4.2.3 Choice Models and Arguments

A choice model object is associated with each vertex in an FGM and gives the prob-
ability of choosing each outgoing edge. A choice model is essentially an observation
model in which the observation consists of an edge index. Only the simple choice
model corresponding to a discrete observation model is provided in the initial release
of MODL . In this release the choice model argument object operates as for observation

models to implement MDL.

4.2.4 Selection Functions and Arguments

A selection function object represents a family of selection functions parameterized
by a given selection function argument object. The initial release of MODL supports a
single family: coordinate-wise projectors. The argument specifies which observation
tuple positions are to be included, and in what order.

Selection function objects support argument composition. For projectors this com-
bines two projections to yield an argument object representing their combination.
Comparison of argument objects is also supported. In this way the detection of equi-

valent selection functions is accomplished in a highly general way.



Chapter 5
Emphasis Reparameterization

This chapter! illuminates certain fundamental aspects of the nature of normal (Gaus-
sian) mixtures. Thinking of each mixture component as a class, we focus on the cor-
responding a posteriori class probability functions. It is shown that the relationship
between these functions and the mixture’s parameters, is highly degenerate — and that
the precise nature of this degeneracy leads to somewhat unusual and counter-intuitive
behavior. Even complete knowledge of a mixture’s a posteriori class behavior, reveals
essentially nothing of its absolute nature, i.e. mean locations and covariance norms.
Consequently a mixture whose means are located in a small ball anywhere in space,
can project arbitrary class structure everywhere in space.

The well-known expectation maximization (EM) algorithm for Maximum Likeli-
hood (ML) optimization may be thought of as a reparameterization of the problem
in which the search takes place over the space of sample point weights. Motivated
by EM we characterize the expressive power of similar reparameterizations, where
the objective is instead to maximize the a posteriori likelihood of a labeled training
set. This is relevant to, and a generalization of a common heuristic in machine learn-
ing in which one increases the weight of a mistake in order to improve classification
accuracy. We prove that EM-style reparameterization is not capable of expressing ar-

bitrary a posteriori behavior, and is therefore incapable of expressing some solutions.

1This chapter first appeared as a technical report [RY96c]
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However a slightly different reparameterization is presented which is almost always

fully expressive — a fact proven by exploiting the degeneracy described above.

5.1 Introduction

A normal mizture is a finite stochastic combination of multivariate normal (Gaussian)

densities. That is, a probability density function p on R? of the form:
k
p(x) = ZmiNEum(x)
i=1

where my,...,m; > 0 with Ele = 1, and Ny, ., (x) denotes the normal density
with mean p; and covariance ;. Fach constituent normal density is referred to as a
component of the mixture, and myq,..., my are the mizing coefficients.

Normal mixtures have proven useful in several areas including pattern recogni-
tion [DH73] and speech recognition [RJL.S85, Bro87, HAJ90] — along with vector
quantization and many others. Each component of the mixture is thought of as cor-
responding to some class denoted wy, ..., ,wy, and the a posteriori class probabilities
plwi|z), ..., p(we|z) are used to effect classification.

This chapter considers certain aspects of the relationship between the two faces
of a normal mixture, i.e. the mixture itself versus the a posteriori class functions it
induces. Section 5.2 shows that this relationship is not one-to-one and exposes the
considerable degeneracy wherein many distinct normal mixtures induce the same class
functions.

As a positive result of this degeneracy one can search the entire space of class
functions without considering all possible mixtures. This is relevant to problems whose
solution depends only on the mixture’s second face, i.e. its induced class functions.
An example of such a problem is that of maximizing the a posteriori class probability
of a labeled training set. Here the objective is to predict the correct labels, not model
the observation vectors themselves.

Section 5.3 shows that such search problems may almost always be carried out

using reparameterizations we refer to as emphasis methods that are motivated by the
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simple and intuitive expectation maximization (EM) algorithm [BE67, DLR77, RW84]
for unsupervised maximum likelihood (ML) parameter estimation. The reparameter-
ized problem cannot express an arbitrary mixture but nevertheless, because of degen-
eracy, can express a mixture that induces optimal class functions with respect to the
prediction of training labels. To clarify these problems and their relationship to the
notion of emphasis we begin with review.

Given an unlabeled training set the EM algorithm iteratively improves (in the ML
sense) any mixture — unless it is already locally optimal. The improved means and
covariances are given by a simple weighted averaging computation. Given data values
S1y. .., 8, and a normal mixture M, one begins by computing p(w;|s;, M),V1 <1 <
k,1 <3 <n. Conceptually the result is a £ x n table of nonnegative values. The rows
of this table are then normalized so that their sum is one. Each row then corresponds
to a convex combination of the samples. The entries along a row are thought of as
weights attributed to the sample. Each improved mean vector p; is merely the corres-
ponding weighted average (convex combination) of the sample vectors. Each improved
covariance is the sample convex combination of outer products (s; — u;)(s; — ui)'. The
improved mixing parameters are obtained by normalizing the vector consisting of the
table row weights prior to their normalization. This process is repeated in an elegant
cycle, i.e. each table induces a mixture that gives rise to a new table, and so on.

We view this table as reparameterizing the problem of searching for an ML mixture.
The point is that one might instead have used a direct parameterization consisting
of the individual means, covariance matrices, and mixing parameters — and employed
standard constrained optimization methods from numerical analysis. We loosely say
that such a table driven scheme is an emphasis reparameterization.

Only a locally optimal solution is found through EM but it is important to realize
that the global optimum is a stationary point of the iteration. This means that it can
be expressed via emphasis, i.e. that there exists a table which induces the globally
optimal mixture. This is interesting because not all mixtures can be induced from the
table. In particular, the induced means must lie within the convex hull of the sample

set, and the covariances are similarly constrained.
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The optimization problem corresponding to the other, a posteriori face of the
mixture seeks to maximize the a posteriori likelihood of a labeled training set. That

is, to find a model M which maximizes:

HP(W(SM% M)

where w(s;) is the class label associated with sample s;. This is sometimes called the
mazimum multual information (MMI) criterion in the speech recognition literature
[Bro87]. We remark that more general forms of this problem may be stated in which
the labels are themselves probabilities. Sections 5.3 and 5.4 consider the question of
whether emphasis-like reparameterizations may be used to attack the more general
form of this problem.

This is relevant to a common heuristic in machine learning in which one some-
how increases the weight of (emphasizes) a mistake in order to improve classification
accuracy. It is natural to wonder whether such approaches are even capable of ex-
pressing the solution. In the case of normal mixtures this chapter illuminates the issue
considerably. By theorem 6 one can almost always exactly match the a posteriori be-
havior of an arbitrary mixture by an emphasis method that slightly modifies the EM
approach. Section 5.4 exposes the limitations of EM-style emphasis and shows that it
is not in this sense universal.

These results depend on a detailed understanding of the degenerate relationship
between a normal mixture and its induced class functions. A convenient visualization
of these a posteriori class functions, focuses on decision boundaries, i.e. the surfaces
along which classification is ambiguous.

Imagery like ours in figure 11, and pages 28-31 of [DH73], suggest an intuitive
relationship between mixture component locations, and the resulting a posteriori class
structure and decision surfaces. One imagines each mean to be asserting ownership
over some volume of space surrounding it. This view is however far from the truth and
the a posteriori class structures arising from normal mixtures are far more interesting
than these simple examples suggest.

Theorem 5 reveals that the a posteriori class behavior of normal mixtures is far
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Decision
boundary "y

Figure 11: A even mixture of two normal densities in R%, each with identity covariance.
The two classes are separated by a linear decision boundary.

stranger and counter-intuitive than is generally understood. It shows that knowledge of
a mixture’s a posteriori class structure (which may be thought of as decision surfaces),
tells us essentially nothing about the absolute location of the mixture’s means — or
the absolute nature of its covariances. One can easily imagine a normal mixture, and
picture its corresponding class structure. Now if one is instead given only this class
structure, the theorem says that infinitely many normal mixtures are consistent with
it — and in particular that the means of such a mixture can be located within an
arbitrarily small ball, located anywhere in space.

Despite the popularity of normal mixtures for classification problems, the precise
nature of this highly degenerate relationship between class functions and mixtures does
not seem to have been considered in the literature. Part of the reason may be that
the simple view in which means dominate some portion of the space around them is
exactly the case when all covariances have identical determinant, and uniform mixing
coefficients are used. The most common example of this setting consists of nearest-
neighbor Euclidean clustering which corresponds is the identity covariance case. In
practice, if the determinants are somewhat comparable, and the mixing coefficients
nearly uniform, the simple view is almost always valid. But in many cases, such as
when estimating mixture parameters, no such constraint is imposed, and the means,

covariance matrices, and mixing coefficients are free to assume any values. Here the
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full range of strange behavior may be expected.

5.2 A Posteriori Degeneracy

Let s1,...,5, € R? be a set of observations. Any set of positive weights v1,...,7,,
gives rise in a natural way to a normal density. That is, the normal density having

mearn:

H= E% Z%’Si (9)

and covariance:

D= s 3o =)o = ) (10)

which may be thought of as the weighted maximum likelihood (ML) model corres-

ponding to the observations. Given k sets of weights, as many normal densities arise.

Adding k& additional positive mizing weights wyq, ..., w; serves to specify a mixture

of these k densities, with the probability of the ith component given by w;/ Ele w;.

Thus a total of nk + k weights induce a normal mixture, and we loosely refer to them
as emphasis parameters.

The well known expectation maximization (EM) method may be viewed as a pro-
cess which accepts as input a normal mixture, and outputs an emphasis parameter
set — from which an improved normal mixture arises. This cycle continues as the al-
gorithm climbs towards a local maximum. The global maximum is a stationary point
of this iteration.

From our viewpoint, what is interesting here is that it is possible to search for
an optimal normal mixture, by searching over the space of values for the nk + k
emphasis parameters — rather than using the canonical parameterization consisting of
the unknown mean vectors, covariance matrices, and mixing coefficients.

Now the emphasis parameterization above cannot express an arbitrary mixture.

This is because each induced mean is a convex combination of the observations, and
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must therefore lie within their convex hull. An immediate corollary to our EM com-
ments above is then that the means of an optimal mixture lie within the convex hull
of the observation set. Similarly, not all covariance matrices can be generated by
emphasis, and the covariances of an optimal mixture are similarly constrained.
Expectation maximization strives to maximize the probability of the observation
set. If instead the function to be optimized depends only on the a posteriori behavior

of the mixture, it is natural to ask:

When can emphasis of an observation set induce a mixture which is class

equivalent to an arbitrary one?

Obviously the observation set must satisfy certain orthodoxy conditions such as
being of sufficient size and possessing in some sense enough independence. But bey-
ond these issues the fact that many mean vectors and covariance matrices are not
expressible by emphasis would seem to present a much larger obstacle.

In this section we show that the the relationship between a normal mixture and
its class functions is highly degenerate — so much so that constrained expressiveness
of emphasis does immediately rule out an affirmative answer to our question. Ex-
amples and discussion follow the main mathematical development. The section ends
with a technical convergence-rate result that is needed to establish the next sections’

reparameterization theorem.

Definition 5 A finite mixture is a probability function on a measure space X, arising

from k conditional probability functions (components) as follows:

k k

plz) =Y plz,w) = plrlw)p(w:)

where the constants {p(w;)} are referred to as the mixing coefficients. Any such mia-

ture induces k a posteriori class functions:

p(z|wi)p(wi)

p(wi|$) = p(l‘)

Two finite mixtures are class-equivalent if they induce the same class functions.
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The class functions are not independent since they are constrained by: >, p(w;i|z) =
1. We begin with a simple proposition which allows us in what follows, to focus on
ratios of conditional probabilities, and ignore constant factors. This will be important
since the nonconstant portion of the ratio of two normal densities is a rather simple

object.

Proposition 4 Let p(x) be a k-component mizture, and p'(x|wi),...,p' (x|wi) be a
collection of strictly positive conditional probability functions. If for some j, there

exist constants C; ; such that Vi # j and x € X':

plelw) . plle|w) 1
N T g ) ,7 ( )
p(z|w;) P (z]w;)
then there exist mizing coefficients p'(w1),...,p' (wi) such that the resulling mizture

p'(x) is class-equivalent to p(x).

proof: We begin by giving a formula for mixing coefficients p’(wy),. .., p'(w1), such
that:
. / .
OM.P(WZ) _ p/(“l) (12)
plw;)  P(w;
—_———
ki

Relaxing for the moment the restriction 2521 p(wr) = 1, observe that if p(w;) were
1, then setting p(w;) = ki@ # j, would satisfy the equation. Normalization then

yields a solution which does sum to 1:

@) = e
P L+ Zé;éj k&j
L. .
/ (¥ . :
Plw) = /=5 1#J
L+ Zé;éj k&j

Multiplying each side of Eq. 12 by the corresponding side of Eq. 11 yields:
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‘ : . ! N (1.
plelwi)p(w:) p/(l’lwz)p/(wz) VidjaeX
plzlw;)p(w;)  p(zlw;)p'(w;)

The approach above works so long as p(w;) # 0. If it is zero, then p may be

(13)

treated as a £ — 1 component mixture, and the proposition follows by induction. Till
now j has been fixed and Eq. 13 is established for  # j. This equation is however
easily extended to any pair ¢, ¢ of indices. Let f; denote p(z|w;)p(w;) and f" denote
p'(x]w;)p'(w;). Then:

Lo i LB LT

e fi de B f
Now we may write:
fi 1
B 2521 e - I+ Eégéi fel i

and a corresponding expression for p'(w;|z) in terms of {f;}. We have already seen

that all ratios f;/fo = f!/f}, so Eé# L) i = EZ# i/ [l whence p(w;|z) = p'(wi|z)

and we are done. O

p(wilz)

We now specialize our discussion to mixtures whose components are normal dens-

ities.

Definition 6 A d-dimensional k-component normal mizture, is a finite mixture of

multivariate normal densities:

1
N,

Y —% z—p)t S o—
uz(r) = W Loz ET ) (14)

The mizture’s parameters are then ® = {3, ..., X5, 1y oy g, p(wr), ..., pwr)}-

The following theorem exposes the large degeneracy in the relationship between

normal mixtures, and their induced class functions.

Theorem 5 Let p be a d-dimensional normal mixture with k components. For any

z € R? and € > 0, there exists a d-dimensional k-component normal mizture p', such

that:
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1=l < e
2. |[¥ ]2 < €
3. p' and p are class-equivalent

where | X'||o refers to the Frobenius/Fuclidean matriz norm.

proof: Begin by selecting some distinguished component j. By proposition 4 we
have only to produce ¥'y,..., ¥y and gy, ..., p', such that the ratio conditions of
the proposition are satisfied. Since constant factors do not matter, we ignore several
portions of the definition of a normal density Eq. 14. Namely, the leading constant

and the constant portion of the exponent once multiplied out. The result is that:

l(ztE_lz—ZutE_lz)

N,s(z) x ez

The proportional ratio condition of proposition 4 then leads immediately to the

following necessary and sufficient conditions:

EZ'_I . E'_l — E/Z’_l . E/'—l . .
tz—l tzj—l _ ll‘zl—l ! /tE/—l \Z 7£ J (15)
Mizag  — Mz = [y — R

We set p'; = x and begin by sketching the rest of the proof. The constraints
are satisfied by choosing E’j_l so that each of its eigenvalues is large. Each resulting
>~ must then be positive definite and will also have large eigenvalues. Both ¥
and Y'; then have small norm, satisfying the requirements of the theorem. In this
process, it is only E’;l we are free to choose. Each choice determines the ¥';, and /',
(since we have already set p'; = z). In the limit, as we choose E’j—l with increasingly
large eigenvalues, ||p'; — ;|| = ||p; — x|| approaches zero whence we can satisfy the
theorem’s other condition.

Denote by A(A) the largest eigenvalue of positive definite matrix A, and by A(A)
the smallest. For matrices A, B, it then follows easily from the Cauchy-Schwartz
inequality that A(A + B) > AM(A) — X(B), by writing ||[(A+ B)+ (—=B)]u|| < |[(A+
B)ul|| + || — Bu|| where u denotes any unit length vector. Now the first constraint in

Eq. 15 may be written:
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ol =wtt p(urt —nrh (16)

2 Vi T J
and we then have:

AETH 2 MET) = XS -5

J

The parenthesized term is constant since we are given both X' and Ej_l, and by
subadditivity of symmetric matrix spectral radii, does not exceed their sum A\(X;71) +
X(E;l). We can easily choose E’;l such that A(E';l) is arbitrarily large, e.g. ¢- [
where ¢ is a large positive constant. It follows then that A(Z’Z»—l) will also be arbitrarily
large, ensuring that it is positive definite.

Next recall that the column norms of a matrix A cannot exceed its spectral radius
(operate on each member of the canonical basis). In our positive definite setting each
is then bounded above by X(A), so that ||A|l; < v/dX(A). Choosing the smallest
eigenvalue of E’j_l and ¥'7" to be arbitrarily large, forces A\(¥';) and A(X;) to be
arbitrarily small — satisfying the theorem’s first condition.

We set 1i; to be equal to z from the statement of the theorem, and the second

constraint in Eq. 15 may be rearranged to yield:

W= (BT + [T s + 7 wy)] (17)
By our earlier discussion, we may force ¥'; to be arbitrarily close to zero — forcing
the bracketed term in Eq. 17 to approach zero as well. We next show that the first
parenthesized term E’Z»E’j_l tends to the identity matrix I as A(E’;l) — oo. This then
demonstrates that y’; — z satisfying the theorem’s second condition, and finishes the
proof.
It is easy to see that E’ZE’;I — [ if and only if (E’Z'Z’j_l)_l = ¥, %'" — 1. Using
Eq. 16 this becomes:

[+Y37 =2 = T

which is clearly the case since ¥'; — 0. O
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Figure 12: Two ways to induce a single class function. An illustration of the degen-
eracy in the relationship between normal mixtures, and their induced class functions.
Zero mean normal densities G1 and G2 when mixed evenly induce C1, the a posteri-
ori probability of G1. Normal densities G1’ and G2’ located in the right portion of
the graph do not have zero means, but may be mixed (in a far from even way) so that
C1 results.

To recapitulate, any location for ', and sufficiently large (in the A sense) E’j_l,
will give rise using the proof’s constructions, to values for the other means, covari-

ances, and mixture coefficients, such that a class-equivalent mixture results.

The
proof goes on to establish that in the limit, everything is confined as required within
an e-neighborhood.

Figure 12 provides a simple one dimensional example of the normal mixture to
class function degeneracy. The left pair of Gaussians G1,G2 both have zero mean.
The taller one, G1 corresponds to the first class and has variance 1/2, while G2 has
variance 1 and corresponds to the second class. When mixed evenly, the a posteriori
probability C1 results. Notice that C1 assumes value 1/2 where G1 crosses G2. The

right pair of Gaussians G1',G2" have means at 4 and 5, and variances of 1/5 and 1/4

100
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respectively. An even mixture of them would result in a class function very different
from C1. But if very little weight (= 5.74234 x 107°) is placed on G1', its mode drops
under the graph of G2', and surprisingly, the induced class function is exactly C1. The
parameters of this new mixture follow immediately from the calculations within the
proof of theorem 5.

Figure 13 depicts another two class problem, this time in two dimensions. Here
various elements of each class are arranged so that they may be perfectly separated
by a circular decision boundary. It is clear that we can create such a boundary by
modeling each class with a normal density centered at the origin. We may evenly
mix these components and set their covariance matrices to be multiples of the identity
matrix; chosen so that the two density’s intersection is the desired circle. This is in
some sense the canonical solution but infinitely many others are possible. To begin
with, it is not necessary that both covariance matrices be multiples of the identity. It
suffices that their difference be such a multiple. It is not necessary that their means
be located at the origin. Given a choice of covariance matrices, and the location of
one mean, a location for the other may be computed which gives rise to the same
boundary. Moreover, by choosing the covariances to be nearly zero, corresponding
to highly peaked densities, the two means may be located within an arbitrary e-
neighborhood anywhere in R% This illustrates the degeneracy by focusing only on
the decision boundary, but theorem 5 shows that the family of class functions may
be matched everywhere. The situation in figure 13 was first contrived in an attempt
to disprove our emphasis reparameterization theorem, the subject to which we next
turn. The data points are arranged along only part of the circle so that no convex
combination of them, can possibly express the origin. That is, the origin is outside
of the convex hull of the dataset. At that time we thought that this would prevent
such combinations from leading to a mixture capable of inducing the desired circular
decision boundary. The revelation of theorem 5 is that the component means of such
a mixture can be located anywhere.

We have seen that all the ¥’; converge to ¥'; as the latter tends to zero. At the same

time, the p'; approach ';. The rate of convergence is our next topic. In particular
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Figure 13: If data points of two colors are imagined to hug the inside and outside of
a circular decision boundary, one might think that a Gaussian mixture model capable
of separating the classes, would necessarily have component means at the center — but
this is not the case.

we will show that |¥/; — ¥';| — 0 quadratically as ¥'; — 0. This is formalized in the
following proposition which is needed to establish the main result of the next section.

We remark that the convergence of each y'; to p'; is only linear.

Proposition 5 ||X; — ¥;| = 0N (X))

proof: The difference 7" — Z;l is constant and is denoted by €. Then:
- = (o) = (x

Denoting E’j—l as P for clarity this becomes:

(P+C)y'=pP" = [(I+CPHP - P
= PI-(I+CP7h)7 (18)

Now clearly I + C'P~! — [ with A(P~!) and the eigenvalues of I 4+ C'P~! approach
unity at this rate. So (I +CP~')™! — [ as well — also with X(P_l). Hence |1 — (I +
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CPH) = O(X(P_l) in Eq. 18. But ||P7Y|| = O(X(P_l)) as well, so |[(P+C)™! —
2

P7Y =00 (PY). O

5.3 Emphasis Reparameterization

The question “Can emphasis induce a mixture class-equivalent to an arbitrary one?”
posed at the beginning of the previous section is reasonable since from theorem 5
we know that the means of such a mixture can lie within an arbitrarily small ball
located anywhere in space. So confinement to the convex hull of the samples is not
necessarily a restriction. Likewise the covariances can be chosen to have arbitrarily
small Frobenius norm.

The main result of this section is a qualified positive answer to this question. It
states that a modified form of emphasis can, for almost all sufficiently large observation
sets, induce a mixture which is class equivalent to an arbitrary one.

Modifications are needed because even though the means and covariances may be
chosen with a great deal of freedom, they are still highly constrained by the conditions
of Eq. 15 — and it is sometimes impossible to generate a mixture which has satisfies
these constraints by the form of emphasis employed by EM. The next section expands
on the limits of EM-style emphasis.

The required modifications consist of a single change to Eq. 10 which becomes:

Y= Z%’(Sz’ — u)(si — ) (19)

where the leading normalization has been removed. This allows the scale of the cov-
ariance to be adjusted without affecting the mean.
Before stating and proving our reparameterization result, a particular matrix is

defined whose nonsingularity is a condition of the theorem.

Condition 1 Denote by S; the column vector formed by concalenating s;st and s;,
and let n (the number of samples) equal d(d + 3)/2. Next form square matriz S by

combining these columns. For example, if d = 2 we have:
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S1,151,2  S2,1522 S31832 S41542 S51552
S S5, San St o4
S1,1 Sa1 Sa1 Sq1 Ss1
S1,2 S22 S32 S42 Ss2

Qur condition is that S be nonsingular.

It is not hard to show that this condition is almost always satisfied, a fact formal-

ized by:

Proposition 6 Regarding a sample of size d(d+3)/2 as a single random variable of
dimension d*(d+ 3)/2, the set of such vectors which give rise to singular S matrices,

has measure zero.

proof:  Since the matrix consists of monomials of distinct structure, no non-zero
linear combination (over the ring of polynomials) of its columns or rows vanishes. So
its determinant, as a polynomial, is not identically zero. But the roots of a non-zero

polynomial form a set of zero measure. O

Next we simplify our setting, adjust notation, and establish one more proposition
before turning to the theorem. Without loss of generality, we may assume that our
samples have mean zero. To see this, first let { denote some target mean, where we
seek stochastic v values such that > v;s; = t. We may equivalently solve Y st = ¢/,
where st & s; — B[S] and ¢/ = ¢ — E[S], since Y yist = (X ws:) — E[S]. The
problem of expressing a target covariance is unchanged by coordinate translation,
since (s; —t) = (st —t'). Notice that this is true even if the v are not stochastic. So
in what follows, we will drop the prime notation and simply assume that E[{s;}] = 0.

The mixture we generate will have all of its means located near zero, the mean
of the sample set. The distinguished mixture component, identified with index j in

the previous section, is located exactly at the origin. The location of the other mean
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vectors, are thought of as small displacements ¢ from the origin. We then write s;(d)

to mean s; — ¢, and the S matrix is then parameterized by 4 in the obvious way, and

denoted S(§). Note that S(0) is just S as originally defined.

Proposition 7 Given nonsingular S, 3¢ > 0 such that V§ satisfying ||6]| < ¢, S(6)

is nonsingular.

proof: Immediate from the continuity of the § parameterization of S. O

Each value of § corresponds to a choice of mean vector, and gives rise to a linear
mapping S(4). That is, for each choice of d, a linear map arises. The proposition tells
us that so long as our mixture’s means are kept within distance ¢ of the origin, all
associated linear mappings are invertible.

The utility of S(4) is that it allows us to simultaneously express the objectives
of obtaining by emphasis a specified mean vector, and covariance matrix. If ' is
a nonnegative emphasis vector, d; is the targeted mean vector, and ¥; the desired
covariance matrix, then we must solve the system S(6,)' = ¥, : 0. Here ¥, is regarded
as a vector which is concatenated (denoted “:”) with the d-dimensional zero vector.

The T' above is nonnegative, but not necessarily stochastic. This may seem to
be inconsistent with our definition of the generation of a mean vector by emphasis,
because of the normalization it includes. But it is not since Y vi(s; — d) = 0 is

equivalent to (1/>° ) >~ = d, which is exactly our definition.

Theorem 6 Given any d-dimensional normal mizture M with k components, and
81,38, € R such thal n > d(d + 3)/2 with some subset of size d(d + 3)/2 sal-
isfying condition 1, then there exists a k x n table of nonnegative values {v; ;}, and
nonnegative values my,...,mg_y with Y, my < 1, such that the normal mizture M’

generated as described below, is class-equivalent to M.

. k-1
1. The mizing parameters of M' are my,...,my_1,1 = > .2 m;.

2. Fach mean u! within M' is given by:
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Hi = Z Vi385

] 17%] =1

3. Fach covariance ¥ within M’ is given by:

B = Z’m — i)'

Also, the number of parameters may be reduced to (k — 1)d(d + 3)/2 + d, matching
the complexity of the canonical parameterization, by replacing the top v-table row, by

a single new parameler o.

proof:  Choose some subset of the {s;} of size exactly d(d + 3)/2 that satisfies
condition 1. We disregard the other elements entirely, and therefore simply assume that
n =d(d+3)/2. As argued earlier, we may also assume without loss of generality that
the {s;} have mean zero. Then the distinguished mixture component from theorem
5, with parameters (u';,X';), is chosen as follows. Its mean y'; is the origin, and its

covariance Y'; is proportional to the average of the element self-outer-products, i.e.:

n
1
E'j = a— g sisf
n
=1

This may be thought of as choosing the first row of the v table to be 1/n, and
introducing a new scale parameter a. The table’s top row elements are no longer
parameters, so the total becomes (k — 1)d(d + 3)/2 table parameters, plus d — 1
mixing parameters, plus o — matching the count in the statement of the theorem. As
described in the proof of theorem?, the choice of y'; is arbitrary, but ¥'; may need to
be scaled down to preserve the positive nature of all matrices. The number of resulting
parameters in a direct parameterization (i.e. consisting of means, covariances, and
mixing parameters), then matches our count.

As a — 0 we know that the p/; — p'. = 0. Our first step is to choose a sufficiently
small, so that the largest ||p/;|| is smaller than the ¢ of proposition 7. Next, « is possibly

reduced further until each covariance matrix ¥'; arising from Eq. 7 is positive.
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Each 4/ corresponds to a ¢ value in our definition of S(4). The reference mean,
located at the origin, corresponds to 4 = 0, and by our construction, arises from
weighting the s, by non-negative v values — in this case uniform ones. Associated
with each p/; there is also a ¥';. Recall from our earlier discussion, that our focus is
on the equation S(u;)I' = ¥; : 0. Since S(§) is non-singular for each of the u';, we
know that some vector of 7 values satisfies this equation. We have only to show that
solutions consisting only of nonnegative values can be found.

We will say than a point is representable under some S(§), if its inverse image
under this mapping consists only of non-negative values. There exists a representable
open neighborhood about a(Y’; : 0) under S(0), since the inverse image of this point?
is the constant vector a/n, and consists of strictly positive values.

Within our bounds on 4, it uniform-continuously® parameterizes S(§). Hence there
exist values ¢’ and ¢, such that for all § with ||d]| < ¢/, the open ball about a(¥’; : 0),
with radius e, is representable under S(d). To avoid introducing another symbol, let
¢ now denote the maximum such radius.*

Next notice that the space of representable points is convex and includes the origin.
So representability of «(X’; : 0) implies representability for all « values. Now if
necessary, reduce a further so that all the u’ are within ¢’ of the origin.

Now let P denote the subspace of nonnegative I' vectors. Let:

T2 () S(6)P
lIsf|<e’
Subspace T' is the portion of the range, representable under any S(§) such that § < ¢
About a(X'; : 0) we have seen that there is a representable ball of radius € which
touches the boundary of 7. We now denote this radius by ¢(a) since we are about to
/

consider its behavior as & — 0. By our earlier comments, 7" includes a(%’; : 0), and

all proportional vectors, in particular as a@ — 0.

2The inverse image is a unique point because S(§) is invertible.

3and in fact nearly linearly for small §.

4A maximum exists because entries in S corresponding to covariance diagonal, are nonnegative,
preventing many negative values from being representable.
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The geometric observation key to our proof is that ¢(a) can shrink only as fast
as « itself, since this value represents the shortest distance to some point set, in this
case T°. We imagine T' to be a tunnel, leading to the origin while constricting, with
the boundary of T'° forming the tunnel’s wall.

Focus now on some p';. While there is a corresponding representable ball about
a(X'; 1 0) of radius €(a), there is no guarantee that ¥'; is within it. As a — 0, we
have seen that the radius of this ball shrinks linearly with a. But the distance of ¥;
from X'; by proposition 5 shrinks quadraticly with «, whence eventually, i.e. for small
enough a, Y'; becomes representable. Then « is reduced as necessary for for each

component of the mixture, so that afterwards, every ¥’ : 0 is representable. O

Other emphasis theorems are possible. In particular it is much easier to establish
a similar result in which the weights may be either positive or negative because then

the only requirement is that S(J) be nonsingular.

5.4 The Limitations of EM-style Emphasis

In the previous section we saw that using a particular form of emphasis reparameter-
ization, the a posteriori behavior of any mixture could be matched. We say that such
a sample set and emphasis method is universal. This section is by contrast essen-
tially negative, and begins with an example demonstrating that even in one dimension,
EM-style emphasis is not universal.

Our example is in R, and includes two observation points located at 0 and 1. The
leading normalization factors in Eq. 10,9 amount to enforcing convex combination, so
there is only one degree of freedom given our two element observation set. If 4 denotes
the weight of the first point, then the second has weight 1 — ~. The induced mean is
just v and the induced variance v(1 — 7). Our objective is to generate a two element
mixture which is class equivalent to an arbitrary one, so two emphasis parameters
71 and 73 are needed. The two constant differences to be matched (from Eq. 15) are
denoted Ay and A,. That these are independent and unconstrained characteristics an

equivalence class follows from the observation that we may, without loss of generality,
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set one of the target means to zero. The constraints then become:

1 1
_ — Ay
71(1 —’71) 72(1 —72)
1 1

1—’}/1_1—’)/2

= A,

Choose A, > 0. From our second constraint we havey; = 1 —1/[Au+1/(1—72)]
from which it follows that v; = 7, only when they both are 1. But in this case
A, = 0, contradicting our choice. So 71 # ;. Now when 72 = 0, 43 > 0, so here
Yo < 1. Because they are never equal, and their relationship is continuous, this
inequality must hold for any pair satisfying the constraints. But it is easily verified
that Ay — A, = 1/ — 1/v2 whence this quantity is negative. So no pair 71, v exists
which satisfies the constraints given say A, =1 and Ay = 2.

We remark that if instead, one is interested in matching the a posteriori class
behavior of a mixture at only the given sample points, then the example’s argument
does not apply. Indeed it may be verified that this less stringent requirement can
be satisfied. This is not entirely surprising since given exactly d(d + 3)/2 sample
points, one has three free parameters, and must match only two. This is interesting,
and we conjecture that it is true more generally for d > 1 and & > 2 — so long as
n =d(d+ 3)/2. In any event, as a result of our arguments at the end of this section,
it cannot be true for arbitrarily large n. Since we are interested in reparameterizing
problems with arbitrarily many samples, we will not consider the matter further in
this chapter.

The example above applies to dimension 1 only, and a particular set of sample
points. Moreover, its analytical approach does not generalize easily. We now show
that in the general case EM-style emphasis is not universal.

Without loss of generality we will assume p’; = 0 - since otherwise, the problem,
and any solution thereto, can be translated appropriately. We may also assume the

sample points are distinct. Eq. 15 becomes:

Ay =X (20)
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where A, & 37y — Ej_l,u]-. Our focus is on the simple rearrangement of Eq. 20:

YA = (21)

Independent of the X'y, ..., we are free to set p'y,...,p'; so that the A, have
arbitrary values. In particular, we will set them so that A,, = (CC...C)" where
C' > 1 1is a constant.

Now focus on target mixtures such that Ay, £ %71 — Ej_l has value af where
o — 0o. Then X/ = a[—I—E'j_l. So independent of the choice of particular ¥y, ..., Y,
and ¥';, each ¥/ ;1, where ¢ # 7, will approach al. There inverses therefore approach
the diagonal matrix 1/al.

As a — oo, we adjust means as necessary so as to maintain A,, = (CC...C)"
Then from Eq. 21 it is apparent that y'; is very nearly a scaled up copy of the diagonal
of ¥';. Since the off diagonal elements approach zero, it must eventually be the case
that | X';|| < ||¢';]]. Also, since the sample set is finite, it must eventually be that both
are smaller than say 1/100th of the smallest distance between sample points. When
this happens, the distance from p’; to the nearest sample will be at least ||¢/;|.

Now the covariance ¥'; is a convex combination of matrices of the form (s, —
p')(se—p';)t — and the diagonals are nonnegative. The norm of ¥; is at least equal to
the norm of its diagonal, but the diagonal is just the distance from the sample point
to p';. From this it follows that | ¥';|| > ||#;]| which presents a contradiction, whence

EM-style emphasis is not universal. Our arguments above establish:

Theorem 7 [n the setting of theorem 6, altered after the fashion of EM so that each

g ;o )
covariance Y} ts given by:

Sim 3 s — ) — )

] 1 Vig =1
there exist target mixtures which may not be generated by emphasis.
We have seen that no number of sample points make EM-style emphasis universal.

But given enough points, we can certainly identify a particular class equivalence-

class, since all functions involved are analytic with a finite number of parameters.
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So given enough sample points, a reparameterization must be universal in order to
match a target distribution at the sample points only. Now we are interested in
reparameterizations which apply given an unlimited number of points. Therefore,
unlike the modified emphasis reparameterization introduced in the previous section,
EM-style reparameterization is simply not expressive enough to safely reparameterize

a posteriori optimization problems.

5.5 Concluding Remarks

The a posteriori degeneracy we clarify in section 5.2 for normal mixtures must be
added to the list of remarkable characteristics of Gaussians. We have not considered
analogues of theorem 5 for other densities.

The reparameterization of section 5.3 is of mathematical interest, and lends some
credibility to approaches which attempt to maximize a posteriori probability by ad-
justing weights on the available samples — perhaps according to some error measure.
An examination of reparameterization as a primary optimization technique, represents
an interesting area for future work. We must however caution that while our proofs
are constructive, we have not considered the matter of numerical sensitivity. Indeed,
if one attempts to emulate a mixture using means far displaced from their natural
locations, the mixing parameters become quite small. In these cases floating point
underflow is a virtual certainty.

One should not interpret section 5.4 to say that EM-style emphasis will not work

in practice for many problems. It merely exposes its theoretical limitations.
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Chapter 6
Conditional Normal Mixtures

Discrete context models are well established and successful tools with which to model
or compress natural language text. These models predict the next letter, conditioned
on the last few letters seen.

When the data are continuous, as in speech recognition or image processing, the
situation 1s more complicated because one cannot rely upon exact context matches.
As a result, context is typically either ignored, resulting in weak models, or it is
incorporated in a way that is in some sense technically unsatisfactory, i.e. the contexts
overlap so that the future is in effect used to predict the past.

This chapter discusses the learning of context models for continuous problem do-
mains within a strict probabilistic framework. The probability of a time series, or of
a static object such as an image, is expressed as a product of conditional probabil-
ities. Each term predicts a never-before-seen part of the observation conditioned on

earlier-seen portions. Models of this form are referred to in the literature as causal.

6.1 Introduction

Our focus is on such models where each term arises by conditionalizing a mixture of
primitive models, e.g. a conditionalized mixture of normal densities. We show that

reestimation of such a model’s parameters may be reduced to two simpler tasks. In

112
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the case of normal densities one of these is trivial, and the other may be approached
the emphasis parameterization introduced in the previous chapter.

Now in the case of normal mixtures one might instead use a conventional gradient
descent approach and a standard parameterization. Our contribution is the identific-
ation of a particularly simple, generic, and in some sense natural alternative.

In the case of a time series (e.g. a speech signal) the objective is usually to learn
the parameters of a single conditional model that is then applied repeatedly to evaluate
the probability of a series. For static objects such as images of handwritten digits,
one might instead associate a different conditional model with each pixel position.
The image’s probability is then the product of the predictions made by these distinct
models.

The original motivation for this work was in fact the learning of improved causal
models for images — in particular of handwritten symbols. The developments of this
chapter may form the basis for future experiments in this direction.

Given a collection of pairs {(c;, z;)} where z; € R™ and ¢; € RM| our objective is

to maximize over @:
HP($¢|C¢7 ?)

We begin by observing that if the model is a single multivariate normal density,

then this problem may be solved by instead optimizing the joint probability:

Hp(%ci@)

and conditionalizing the resulting normal density — and it is well known that a single
normal density is optimized (in the ML sense) by merely choosing the sample mean
and covariance. The observation follows from the closure properties of multivariate
normal densities under multiplication and conditionalization — and specifically because
the product of a conditional normal density p(z|c) and an ordinary normal density
p(c), is an ordinary normal density p(z, ¢).

So the case of a single normal density is in a sense uninteresting. We remark that

linear predictive speech coding (LLPC) may be viewed as such a model where n = 1.
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In general these simple conditional forms arising from a single normal density form
a prediction z based on a linear transformation of the conditioning information ¢. As
such their expressive power is limited. In particular they cannot deal with modality.
For example, the population of ¢ values may separate into two obvious clusters, each
leading to very different predictions for z. A simple linear predictor cannot cope with
this situation and will instead make a single blended prediction.

By moving from single densities to mixture densities, nonlinear predictions result
and modality can be addressed.

A general mixture may be written

k

p(z,e) = plx, clwi)p(w;)

=1
to describe the joint density (z,¢). Provided that each component p(z,c|w;) has

an associated conditional form p(z|c,w;) we may then write:

k

p(zle) = plxle,w)plwile) (22)

i=1

Such conditionalized mixture forms can capture modality because their mixing
coefficients p(w;|c) are not constant. That is, they depend on the context ¢ and the
mixture stochastically selects a component based on the context.

If each component is a normal density with fixed parameters, the IMM technique
for adaptive estimation and tracking results [BSL93, BBS88]. From this perspective,
our interest is in recovering the model’s parameters from observations.

For a single normal density we have seen that an optimal conditional model may
be formed by first forming an optimal joint model, and then conditionalizing — and
that the optimal joint model is specified by the sample mean and covariance.

Building an optimal joint model for a mixture of normal densities is a non-trivial
and heavily studied problem. The most popular approach is Expectation Maximiz-
ation (EM) which is discussed in earlier chapters and is an iterative technique for

climbing to a locally optimal model.
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But the situation is worse yet for conditionalized mixture forms because it turns
out that conditionalizing an optimal joint mixture model, need not result in an optimal
conditional model.

If the underlying joint density is exactly a normal mixture of & components, then
the optimal conditional density is of course just the conditionalized form the joint
density (by direct calculation). But given a finite sample, and especially one that is
explained poorly by a normal mixture of & components, the optimal conditional model
will in general be different.

To see this we offer the following argument sketch: suppose that z and ¢ are
independent with x explained perfectly by a k element mixture. Then p(z|c) = p(z)
Now consider equation 22. The p(w;|c) terms are constant in an optimal model for
p(z) but instead are conditioned on ¢ in the equation. By modeling the joint density
(z,¢) it will seldom be the case that these terms are constant whence the resulting
model is suboptimal. That is, in the case of independence, the context should be
ignored.

The next section further reveals the role of these a posteriori class functions in
the overall optimization. An example serves to illustrate that the ML estimate does
not necessarily optimize a posteriori class probabilities. Consider figure 14(a) which
depicts four points along the x-axis, two wy, wy labeled white and two by, by black.
These colors correspond to two classes w; and w,. The functions sketched above
them represent the ML normal density associated with each class. Notice the mean of
each is centered at the midpoint between each pair of points, and that the variance is
considerable. If one computes, for example, the a posteriori probability p(w;|w;) based
on the two normal densities shown, the result will certainly exceed 1/2 but clearly
falls well short of unity. If the densities are replaced with the more peaked forms of
the figure’s part (b), all a posteriori probabilities are in closer correspondence to the
point colors. This is true despite the fact that their means have drifted away from the
original midpoint locations. This illustrates that ML, optimization of a labeled dataset
need not optimize a posteriori class probabilities.

Figure 14 also illustrates the general concept of emphasis introduced in the previous
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chapter since the densities of part (b) may be generated by placing more weight on
points w; and by and computing the weighted mean and variance. As the weight on
these outer points is increased the densities approach a pair of vertical pulses (also
depicted) and the a posteriori probabilities approach the ideal values of zero or one in

correspondence with each point’s color.

6.2 Conditional Discrete Mixtures

This section demonstrates how one may separate the parameter-learning task for con-
ditional mixtures, into two simpler problems. This is accomplished using the math-
ematical machinery of EM combined with the introduction of new parameters.

Let x denote the random variable being predicted/modeled, and ¢ a random vari-
able which conditions the prediction. To simplify our notation we will generally use
the single function p to denote both probability densities and probabilities; as well as
related marginals and conditional forms. In all cases it should be possible to distin-
guish different functions by context. We begin by defining the central problem of this
chapter:

Definition 7 An instance of the Minimize Relative Conditional Entropy (MRCE)

problem consists of two sels of values X = {z1,...,2,,} and C = {c1,... ¢},

a probability function m(x,c), and a parameterized conditional probabilily density
p(z|c,®). The problem consists of finding a revised parameter estimate ® such that
H,(X|C,®) < H,(X|C,®), or announcing that a local minimum has been reached.
That is, mazimize with respect to ®, the log-likelihood:

ng Ne

L(®) =) Y m(xi,c;)log plailc;, @)

i=1 j=1

where the values x; and ¢; are members of some (possibly finite) measure spaces.

We remark that m(z,¢) may be any non-negative function since it may be nor-

malized to form a probability function without affecting the problem at hand. The
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Figure 14: The maximum-likelihood normal densities shown in part (a) arising from
the four labeled points, do not lead to optimal a posteriori classification of these
points. The more peaked densities of part (b) are better.
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MRCE problem as one step of an iterative approach since it is not generally possible
to solve directly for even a local maximum of L(®).

Our interest is in parameterized conditional densities p(z|c, ®) which arise from
finite mixture densities of the form:

m

p(;z;,c|(1)) = Zp(l‘,c,wkm))

k=1

where w is a hidden discrete random variable which corresponds to selection of a

component of the mixture. We then write:

m

plz,c|®) = Zp(;z:|c,wk, ®')p(c,wi|P?)
k=1
where it assumed that ® = ®' U ®? with ®' N ®%? = (). Were this not the case, we
could make it so by duplicating any common parameters. The resulting parameterized
density includes the original pdf as a special case. So except for the matter of added
model complexity, our assumption that ®; N ®; = @ is made without harm'. The
generation of a pair (z,c¢) may be thought of as a two stage process. First, a pair
(¢, w) is chosen according to ®? Second, z is generated according to ®' and conditioned
on the earlier choice of (¢,w). Now p(z,c|®) = p(z|c, ®)p(c|®) from which we easily

derive the conditional prediction formula:

pele.®) = —p(r.clo)

1 m
= (C|(I)) Zp($|cawk7q)1)p(cvwk|q)2)
p k=1

=

[

p(zle,wr, @1 )p(wi|c, @)

bl

=1
Thus the conditional form required by the MRCE problem arises naturally from the
joint mixture density. Next, p(c,wi|®?) = p(c|wr, ®*)p(wi|P?), and as before we

!That is, for a given optimization problem, the global optimum over the enlarged parameter set,
is at least as good as the global optimum for the original problem
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can without weakening the model, assume that ®2 is made up of the m marginal
values p(wg|®?) which we will sometimes denote as just p(wy), and m independently
parameterized densities py(c|wg, 3). We will omit the subscript on p since it is clear
from the conditioning on ®f what density we are referring to. We remark that the
same result may be reached by starting with the more common definition of a mixture

density:
p(fﬂ, c|(I)) = Z akpk(xv c|¢k)
k=1

where 77" oy = 1, the «; are nonnegative, and each p; is a parameterized probab-
ility density function with ® & (ay,...,m,é1,...,0m). We prefer our presentation

however since it seems more natural given the structure of later derivations.

Definition 8 An instance of the Mixture-MRCE problem is an instance of MRCE
with the additional assumption that the parameterized probability densily p(zx|c, ®)

arises from a finite mizture density.

Now suppose that O = {(xg,cx)}r=1,..» is an independent sample of unlabeled
observations where X' denotes {z;} and C denotes {¢;}. Our approach in this chapter
is that of maximum-likelihood estimation?, and we are therefore interested in finding
a value for ® which maximizes p(X|C, ®), i.e. [[—, p(zi|c;, @). Such a value need not
exist in general due to degenerate cases such as zero variance distributions, but we
will not consider this complicating detail here. Since we can equally well maximize

the log-likelihood, we have the following:

Observation 1 The problem of finding an improved parameter for conditional miz-
ture applied to a finite set of observations O = {(xg, cx)r=1,...n, 15 a special case of

the Mizture-MRCE problem in which m(z;,¢;) = 1 when i = j and 0 otherwise.

?Maximum-likelihood estimation is sometimes understood to include the assumption that the
distribution from which the sample is drawn is a member of the parameterized family under con-
sideration. We are modelers and assume that nature can be only approximately described by our
densities. We therefore do not imagine that there is a true value ®* which must be estimated. We
simply seek the best fit of our model, to the observed data.
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The definitions above and much of the development that follows may be generalized
to the case where X’ and or C are measure spaces; in which case the summations become
integrals. We will however present the discrete case since it corresponds to our original
problem of parameter estimation given a finite sample.

We now show that the mixture-MRCE problem may be approached by reducing it
to an instance of itself with particular structure, and multiple independent ordinary
(nonmixture) MRCE problems. The ordinary MRCE problems are simpler because
each concerns only a single component of the original mixture and excludes entirely
the mixing coefficients p(wy). The mixture-MRCE subproblem is simpler because it

excludes the z; of the original problem, i.e. it concerns only the model p(c, wi|®?).

Theorem 8 Given a parameter value ® for an instance of mizture-MRCE, the prob-
lem of finding an improved parameter value ® may be reduced to another instance
of the mizture-MRCE — and a set of independent instances of simple (nonmizture)
MRCE, where each is confined to a single component of the original mixture. By
this we mean that any parameter values which tmprove these subproblems, may be

combined to form ®.

Proof: Using the same steps used derive the well-known EM algorithm, we have:

Q(e|®) = ZZZ m(z;, ¢;)p(wi|zi, ¢;, ®) log p(z;, wi|c;, )
=1 j=1 k=1

m

= ZZZm (21, ¢;)p(wi|zi, cj, ) log p(wi|c;, D) (23)

21]1k1

m

+ Zzzm JZHC] wk|$lvc]7q))logp($i|wkacj7@) (24)

=1 j=1 k=1

Reordering the summations in Eg-23 and grouping yields:

m  ne

ZZ Z $27cj)p(wk|xivcj7q)) logp(wk|cj7@)

k=1 j=1 Li=1
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which after normalization of the bracketed term is easily recognized as an instance of
the mixture-MRCE problem. The second term Eq-24 making up ) may be similarly

transformed to yield:

m ng Ne

MDD (mlw, c)plwrles, ¢j, @) log p(eile;, w, 1)

k=1 Li=1 j=1
which is just m independent instances of the simple MRCE problem. Finally, observe
that Eq-6.2 and Eq-6.2 are independent of one another since the first is an optimization
problem over ®' and the second over ®2 — completing our proof. O

Notice that if C contains a single value, the complexities introduced by the con-

ditional form of the problem vanish and one is left with the standard EM setting in
which the mixture-MRCE subproblem is trivially maximized. Also, the conditional

estimation problem becomes a plain estimation problem.

6.3 Application to Normal Densities

For normal densities the conditional estimation problems of Eq-24 are easily solved
since the optimal conditional normal density is obtained by finding the optimal joint
density and then conditionalizing.

The MRCE problem of Eq-23 is however much more difficult. It, or for that matter
the entire problem, might be addressed by gradient descent where the covariance
matrices have been reparameterized to ensure positive definiteness. The purpose of
this chapter is to describe an alternative approach.

Using the emphasis reparameterization results of the previous chapter, we may
(except for degenerate cases) express a posteriori class behavior by reweighting the
available samples.

So in particular Eq-23 may be approached in this way. That is, the {¢;} may be
reweighted until the term is maximized. This amounts to a reparameterization of the
problem in terms of these weights rather than in terms of means, covariance matrices,

and mixing coefficients.
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The fact that for normal densities one may pass easily from such a weight set, to
an ML traditional parameter set, is essential to the approach. That it is capable of
expressing the solution is also a special characteristic of normal densities (see previous
chapter).

But in practice one might wish to use this reparameterization (without proof of
expressiveness) for other densities for which an ML estimate of a weighted sample set
is readily available. Its virtue is that the particular density may then be viewed as a
data type referred to by a single optimization algorithm.

A particularly simple numerical prescription for optimization is that of Powell (see
[Act70, Bre73, PFTVS88]). Speed of convergence is traded for simplicity in that no
gradient computation is required. Emphasis reparameterization does however intro-
duce one wrinkle. The number of parameters can easily exceed the degrees of freedom
in the underlying problem. In the case of normal mixtures, the number of natural
parameters (i.e. mean vector values and covariance matrix entries) may be far less
than the number of training samples available. In this case we propose to modify Pow-
ell’s method to use an initial set of random directions with size matching the number
of native parameters.

The result is a simple and highly general approach to estimating the parameters of
conditional mixtures. That the approach can express the globally optimal parameter
set has only been established for normal mixtures, but we expect that approach may

nevertheless work well in other settings.

6.4 Further discussion of the formulation of the MRCE

problem

The conditional entropy minimization problem can express the traditional problem of
supervised learning given boolean my; with Y " my; = 1. That is, each datapoint
has an attached label. The MRCE problem is then to minimize the bits required to
express the labels, given the data. Our definition of MRCE places no restriction, other

than non-negativity, on the my ;. In this section we motivate the form of our definition
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by showing that these weights have a natural stochastic interpretation.

Imagine a random process where each trial consists of drawing a label from
w1, ...,w, for each of the points ¢1,...,c,. The outcome of each trial is repres-
ented by boolean random variables d;; defined to be 1 if ¢ is observed to have label
w;, and 0 otherwise. No independence assumptions are made. The trials might be
time dependent; and within a trial, the labels might be dependent in some complex
way. Fach trial produces a labeled dataset with likelihood:

n m

[T ITp(wiley, @72)%

k=1 i=1

Denoting by L(®12) the logarithm of this likelihood, a straightforward consequence

of the linearity of expectations is then that:

k=1 =1

E(L(®1?)) = E(Z 5k,i10gp(wi|ckam)>

— Z Z log p(w;|cx, ®12) E(6y,;)

k=1 i=1

where the expectation is over trials of the random labeling process. The key feature
of this expression is that the expectation of each labeled dataset’s log likelihood,
is independent of the exact nature of the labeling process; depending only on the
individual expectations F(d;). The significance of this independence, is that we can
optimize E(L(®12)) with respect to 1.2, where the only knowledge we have regarding
the labeling process is the set of terms {F(dx;)}. Now > 7 &p; = 1 since only a
single label is drawn for each point. So > " E(dx;) =1 as well. These dy; terms are
therefore the probability of observing label w; given point ¢; and correspond to the
term p(w;|cg, Tk, @) in Eq-23. Because of the argument above, we think of the weights
as stochastic labels attached to each point.

In the setting above, each trial can be thought of as drawing a sample of size
n consisting of exactly ¢,...,¢, each time. This is just one example of a process

which draws sample of size n, from the {c;} with equal probability 1/n. An argument
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essentially the same as that above can then be made for a process in which each
trial draws a single data point from ¢y,..., ¢, and then a single label for that point.
By repeated trials, the sample of size n is built. The result is that given only the
probability of drawing each ¢, and the p(w;|ci), we can optimize our expected log
likelihood for a series of n samples, independent of the exact nature of the process.

Now an equivalent problem results if our matrix of weights M £ {my} is scaled
by a constant so that the sum of its entries is 1, so we will assume that this is the
case. It can then be thought of a joint probability density on &, so that entry may be
expressed as a product p(¢|k)p(k). More formally, M may be expressed as a diagonal
matrix with trace 1 representing p(k), times a row stochastic matrix representing
p(e|k).

In summary, an instance of the MRCE problem may be thought of as consisting
of ¢1,..., ¢, and the stochastic knowledge in the two matrices above. The significance
of its solution is that it represents a minimum not just over parameter values, but
over all processes consistent with this knowledge. If our objective were to maximize
expected likelihood rather than expected log likelihood, this would not be true. Thus
beyond the obvious mathematical convenience of working with log likelihood, there
is a deeper benefit to doing so. Everything we’ve said is true in a far more general
sense for arbitrary density f(z,y) and sets X and ), where we focus on a series of T

samples and have the likelihood:

ITITII /Gy

t=1 z€X yey

but we will not repeat the argument above at this slightly more abstract level.

Instead we turn to a concrete example loosely motivated by the problem of portfolio
optimization as framed in [Cov84] and discussed in chapter 2, in order to illustrate
the mathematical point above.

Suppose that one may draw vectors from R at random according to some hidden
distribution A, and that the one thing known about this distribution is that only two
values 2 and 0.5 are ever drawn in each component position, and that they occur with

equal probability in each position. That is, all single variable marginals are known.
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Now focus on the product of a vector’s components. Our expectation of the log, of
this product’s value is zero because the product becomes a sum of logs, and because
of linearity of expectations.

Of significance is that the expectation is zero, independent of the nature of A.
By contrast, our expectation of the product’s value (without taking the logarithm) is
highly distribution dependent. For example, if the distribution generates a vector of
2’s half of the time and a vector of 0.5’s the rest of the time, the resulting expectation
is (2%9% +27%%)/2 and is immense.

The fascinating observation regarding optimizing log-likelihood as opposed to like-
lihood, is that on the one hand the optimization is over a huge space of hidden distribu-
tions, but on the other hand the optimization ignores information in those distributions

that can significantly affect the expected likelihood.

6.5 Possible Applications

We conclude by identifying and briefly discussing a number of potential applications
for conditional normal mixture models (CNM).

As mentioned earlier, our starting point was handwriting recognition and in par-
ticular the problem of offline digit classification. The space of digit images is modeled
as a mixture of models, one for each digit. We suggest that each digit’s model itself
consist of a mixture of models intended to capture the sometimes very different styles
used to represent the same numeral. Each digit style model would then consist of a
product of CNMs, one for each pixel position, with conditioning on some subset of
the earlier-seen pixels. The use of CNMs in this way promises to better model the
variation that exists within a single style. The final model may be used to implement
a traditional Bayesian classifier. The introduction of discriminative training into this
framework is an interesting area for future work.

The same approach might be used in machine vision to build highly general stat-
istical models for particular objects based on a set of training images. A classifier

may then build as for handwritten digits. Applied to images CNMs might also find
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application in image restoration or perhaps in the area of digital water-marking.

Our development in chapter 2 showed that Baum-Welch/EM may be used to es-
timate the parameters of non-causal models as well. In many applications, including
some of those mentioned above, a non-causal model may suffice. For images this
corresponds to the modeling of a pixel using a context that entirely surrounds it.
Baum-Welch/EM is certainly easier to implement than the approach of this chapter
and may therefore represent the technique of choice when implementing non-causal
CNM models.

Finally we point out that while this chapter has focused on ML estimation, tech-
niques similar to those of chapter 2 might be developed to implement alternative

estimation criteria.
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